Multi-level Big Data Content Services for Mental Health Care

  • Jianhui Chen
  • Jian Han
  • Yue Deng
  • Han Zhong
  • Ningning Wang
  • Youjun Li
  • Zhijiang Wan
  • Taihei Kotake
  • Dongsheng Wang
  • Xiaohui Tao
  • Ning ZhongEmail author
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE)


Systematic brain informatics studies on mental health care produce various health big data of mental disorders and bring new requirements on the data acquisition and computing, from the data level to the information, knowledge and wisdom levels. Aiming at these challenges, this chapter proposes a brain and health big data center. A global content integrating mechanism and a content-oriented cloud service architecture are developed. The illustrative example demonstrates significance and usefulness of the proposed approach.


Wisdom as a service Mental health care Data-brain Brain informatics Provenances 



The work is supported by National Basic Research Program of China (2014CB744600), China Postdoctoral Science Foundation (2013M540096), International Science & Technology Cooperation Program of China (2013DFA32180), National Natural Science Foundation of China (61272345), Research Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, Open Foundation of Key Laboratory of Multimedia and Intelligent Software (Beijing University of Technology), Beijing, the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (25330270), and Support Center for Advanced Telecommunications Technology Research, Foundation (SCAT), Japan.


  1. 1.
    M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing (Technical report, EECS Department, University of California, Berkeley, 2009)Google Scholar
  2. 2.
    J.M. Bower, H. Bolouri (eds.), Computational Modeling of Genetic and Biochemical Networks (MIT Press, Cambridge, MA, 2001)Google Scholar
  3. 3.
  4. 4.
    H. Chaouchi, The Internet of Things-connecting Objects to the Web (ISTE Ltd., Wiley, New York, 2010)Google Scholar
  5. 5.
    J.H. Chen, N. Zhong, Data-brain modeling based on brain informatics methodology, in Proceedings of 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI’08) (2008), pp. 41–47Google Scholar
  6. 6.
    J.H. Chen, N. Zhong, Data-brain modeling for systematic brain informatics, in Proceedings of 2009 International Conference on Brain Informatics (BI 2009) (2009), pp. 182–193Google Scholar
  7. 7.
    J.H. Chen, N. Zhong, Toward the data-brain driven systematic brain data analysis. IEEE Trans. Syst. Man Cybernet. Syst. 43(1), 222–228 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J.H. Chen, J.H. Ma, N. Zhong, Y.Y. Yao, J.M. Liu, R.H. Huang, W.B. Li, Z.S. Huang, Y. Gao, J.P. Cao, WaaS-wisdom as a service. IEEE Intell. Syst. 29(6), 2–9 (2014)CrossRefGoogle Scholar
  9. 9.
    C.A. Cocosco, V. Kollokian, R.K.S. Kwan, A.C. Evans, BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4, part 2/4), S425 (1997)Google Scholar
  10. 10.
    O. Cure, On the design of a self-medication web application built on linked open data. J. Web Sem. 24, 27–32 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Dillon, A. Talevski, V. Potdar, E. Chang, Web of things as a framework for ubiquitous intelligence and computing, in Proceedings of the 6th International Conference on Ubiquitous Intelligence and Computing (2009), pp. 1–10Google Scholar
  12. 12.
    P.L. Elkin, S.H. Brown, C.S. Husser, B.A. Bauer, D. Wahner-Roedler, S.T. Rosenbloom, T. Speroff, Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. Mayo Clin. Proc. 81(6), 741–748 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Han, J.H. Chen, H. Zhong, N. Zhong, A brain informatics research recommendation system, in Proceedings of the 2014 International Conference on Brain Informatics and Health (BIH 2014) (Springer, LNAI 8609, 2014), pp. 208–217Google Scholar
  14. 14.
    B. Hayes, Cloud computing. Commun. ACM 51(7), 9–11 (2008)CrossRefGoogle Scholar
  15. 15.
    J.D. Van Horn, A.W. Toga, Is it time to re-prioritize neuroimaging databases and digital repositories? NeuroImage 47(4), 1720–1734 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D.P. Hill, R. Kania, M. Schaeffer, S. St. Pierre, S. Twigger, O. White, S.Y. Rhee, Big data: the future of biocuration. Nature 455, 47–50 (2008)Google Scholar
  17. 17.
    M. Hunter, R.L.L. Smith, W. Hyslop, O.A. Rosso, R. Gerlach, J.A.P. Rostas, D.B. Williams, F. Henskens, The Australian EEG database. Clin. EEG Neurosci. 36(2), 76–81 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Jankowski, A. Skowron, and R.W. Swiniarski, Interactive rough-granular computing in wisdom technology, in Proceedings of 2013 International Conference on Active Media Technology (AMT 2013) (2013), pp. 1–13Google Scholar
  19. 19.
    P.D. Kaur, I. Chana, Cloud based intelligent system for delivering health care as a service. Comput. Methods Prog. Biomed. 113(1), 346–359 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A.C. Guo, D.S. Wishart, DrugBank 3.0: a comprehensive resource for omics research on drugs. Nucleic Acids Res. 39(suppl 1), D1035–D1041 (2011)CrossRefGoogle Scholar
  21. 21.
    Z.Z. Liao, H.Y. Zhou, C. Li, J. Zhou, Y.L. Qin, Y. Feng, L. Feng, G. Wang, N. Zhong, The change of resting EEG in depressive disorders, in Proceedings of the 2013 International Conference on Brain and Health Informatics (Springer, LNAI 8211, 2013), pp. 52–61Google Scholar
  22. 22.
    P.F. Liu, M. Li, S.F. Lu, J. Wang, Y. Zhou, X.Y. Su, N. Zhong, Impairments of working memory for object-location associations in depression. Appl. Mech. Mater. 590, 828–832 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Mazzocca, R.A. Micillo, S. Venticinque, Automatic and dynamic composition of web services using ontologies, in Proceedings of 5th Atlantic Web Intelligence Conference (AWIC 2007) (2007), pp. 230–235Google Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic matching of web services capabilities. Pro. ISWC 2002, 333–347 (2002)zbMATHGoogle Scholar
  28. 28.
  29. 29.
    C.P. Shen, W.Z. Zhou, F.S. Lin, H.Y. Sung, Y.Y. Lam, W. Chen, J.W. Lin, M.K. Pan, M.J. Chiu, F.P. Lai, Epilepsy analytic system with cloud computing, in Proceedings of 35th Annual International Conference of the IEEE EMBS (2013), pp. 1644–1647Google Scholar
  30. 30.
    Y.L. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science. Sigmod Record 34(3), 31–36 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Skowron, M. Szczuka, Toward interactive computations: a rough-granular approach. Adv. Mach. Learn. II, SCI 263, 23–42 (2010)Google Scholar
  32. 32.
    A. Skowron, A. Jankowski, Interactive computations: toward risk management in interactive intelligent systems. Nat. Comput. (2015). doi: 10.1007/s11047-015-9486-5 MathSciNetGoogle Scholar
  33. 33.
    V. Stirbu, Towards a RESTful plug and play experience in the web of things, in Proceedings of the 2008 IEEE International Conference on Semantic Computing (2008), pp. 512–517Google Scholar
  34. 34.
    J.M. Tenenbaum, J. Shrager, Cancer: a computational disease that AI can cure. AI Mag. 32(2), 14–26 (2011)Google Scholar
  35. 35.
    P.E. Turkeltaub, G.F. Eden, K.M. Jones, T.A. Zeffiro, Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780Google Scholar
  36. 36.
    J.D. Van Horn, J.S. Grethe, P. Kostelec, J.B. Woodward, J.A. Aslam, D. Rus, D. Rockmore, M.S. Gazzaniga, The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos. Trans. R. Soc. B: Biol. Sci. 356(1412), 1323–1339 (2001)CrossRefGoogle Scholar
  37. 37.
    E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, G. Borriello, Building the internet of things using RFID. IEEE Internet Comput. 33(3), 48–55 (2009)CrossRefGoogle Scholar
  38. 38.
    Y.Y. Yao, N. Zhong, J. Liu, S. Ohsuga, Web intelligence (WI): research challenges and trends in the new information age, in N. Zhong, Y.Y. Yao, J. Liu, S. Ohsuga (eds.) Web Intelligence: Research and Development (Springer, LNAI 2198, 2001), pp. 1–17Google Scholar
  39. 39.
    Y. Zeng, Y.Y. Yao, N. Zhong, Dblp-sse: a dblp search support engine, in The 2009 IEEE/WIC/ACM International Conference on Web Intelligence(WI’09) (2009), pp. 626–630Google Scholar
  40. 40.
    Y. Zeng, N. Zhong, Y. Wang, Y.L. Qin, Z.S. Huang, H.Y. Zhou, User-centric query refinement and processing using granularity based strategies. Knowl. Inf. Syst. 27(3), 419–450 (2010)CrossRefGoogle Scholar
  41. 41.
    N. Zhong, J.M. Liu, Y.Y. Yao, S. Ohsuga, Web intelligence (WI), in Proceedings of the 24th IEEE Computer Society International Computer Software and Applications Conference (COMPSAC 2000) (2000), pp. 469–470Google Scholar
  42. 42.
    N. Zhong, Impending brain informatics research from web intelligence perspective. Int. J. Inf. Technol. Decis. Mak. 5(4), 713–727 (2006)CrossRefGoogle Scholar
  43. 43.
    N. Zhong, J.M. Liu, Y.Y. Yao, J.L. Wu, S.F. Lu, Y.L. Qin, K.C. Li, B. Wah, Web intelligence meets brain informatics, in Proceedings of the first WICI international workshop on web intelligence meets brain informatics (WImBI 2006) (2006), pp. 1–31Google Scholar
  44. 44.
    N. Zhong, S. Motomura, Agent-enriched data mining: a case study in brain informatics. IEEE Intell. Syst. 24(3), 38–45 (2009)CrossRefGoogle Scholar
  45. 45.
    N. Zhong, J.H. Chen, Constructing a new-style conceptual model of brain data for systematic brain informatics. IEEE Trans. Knowl. Data Eng. 24(12), 2127–2142 (2012)MathSciNetCrossRefGoogle Scholar
  46. 46.
    N. Zhong, J.H. Ma, R.H. Huang, J.M. Liu, Y.Y. Yao, Y.X. Zhang, J.H. Chen, Research challenges and perspectives on wisdom web of things (W2T). J. Supercomput. 64(3), 862–882 (2013)CrossRefGoogle Scholar
  47. 47.
    H. Zhong, J.H. Chen, T. Kotake, J. Han, N. Zhong, Z.S. Huang, Developing a brain informatics provenance model, in Proceedings of the 2013 International Conference on Brain and Health Informatics (BHI 2013) (Springer, LNAI 8211, 2013), pp. 439–449Google Scholar
  48. 48.
    H. Zhong, N. Zhong, J.H. Chen, J. Han, Document selection for the data-brain ontology and related information. J. Guangxi Normal Univ. (Natural Science Edition) 32(4), 45–51 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jianhui Chen
    • 1
  • Jian Han
    • 1
  • Yue Deng
    • 2
  • Han Zhong
    • 1
  • Ningning Wang
    • 1
  • Youjun Li
    • 1
  • Zhijiang Wan
    • 1
    • 3
  • Taihei Kotake
    • 3
  • Dongsheng Wang
    • 1
    • 4
  • Xiaohui Tao
    • 5
  • Ning Zhong
    • 3
    • 6
    Email author
  1. 1.The International WIC InstituteBeijing University of TechnologyBeijingChina
  2. 2.The Industry Innovation Center for Web IntelligenceSuzhouChina
  3. 3.The Department of Life Science and InformaticsMaebashi Institute of TechnologyMaebashi-cityJapan
  4. 4.Institute of Intelligent Transport SystemSchool of Computer Science and Engineering, Jiangsu University of Science of TechnologyZhenjiangChina
  5. 5.Faculty of Health, Engineering and SciencesThe University of Southern QueenslandToowoombaAustralia
  6. 6.Beijing Advanced Innovation Center for Future Internet Technology, The International WIC InstituteBeijing University of TechnologyBeijingChina

Personalised recommendations