Ontology-Based Model for Mining User’s Emotions on the Wisdom Web

  • Jing Chen
  • Bin HuEmail author
  • Philip Moore
  • Xiaowei Zhang
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE)


The task of automatically detecting emotion on a web is challenging. This is due to the fact that a traditional web cannot directly interpret the meaning of semantic concepts or assess users emotions. We describe an ontology-based mining model for representation and integration of affect-related knowledge and apply it to detect user’s emotions. This application is a typical use case of the broad-based Wisdom Web of Things (W2T) methodology. The model (named BIO-EMOTION) acts as an integrated framework for: (1) representation and interpretation of affect-related knowledge, including user profile, bio-signal data, situation and environment factors, and (2) supporting intelligent reasoning on users’ emotions. To evaluate the effectiveness of the mining model, we conduct an experiment on a public dataset DEAP and capture a semantic knowledge base expressing both known and deduced knowledge. Evaluation shows that the model not only reaches higher accuracy than other emotion detection results from the same dataset but also achieves a comprehensive affect-related knowledge base which could represent things from both social world, physical world and cyber world in semantics. The ultimate goal of present research is to provide active, transparent, safe and reliable services to web users through their inner emotion. The model implements crucial sub-processes of W2T data cycle: from Things (acquisition of things in the hyper world) to Wisdom (performing intelligent reasoning on web users’ emotion). A long-term goal is to achieve the whole W2T data cycle and to realize a holistic intelligent mining model used on the Wisdom Web.


Emotion Recognition Inference Rule Inference Engine Reasoning Rule Emotion Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the National Natural Science Foundation of China (No.60973138 and No.61003240), the International Cooperation Project of Ministry of Science and Technology (No.2013DFA11140), the National Basic Research Program of China (973 Program) (No.2011CB711000), and Gansu Provincial Science & Technology Department (No. 1208RJYA015). The authors would like to acknowledge European Community’s Seventh Framework Program (FP7/2007–2011) for their public DEAP database.


  1. 1.
    Aduna. Sesame (2012).
  2. 2.
    L. Aftanas, N. Reva, A. Varlamov, S. Pavlov, V. Makhnev, Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci. Behav. Physiol. 34(8), 859–867 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Ariely, G.S. Berns, Neuromarketing: the hope and hype of neuroimaging in business. Nat. Rev. Neurosci. 11(4), 284–292 (2010)CrossRefGoogle Scholar
  4. 4.
    G.M.M Aurup. User Preference Extraction from Bio-signals: An Experimental Study (Concordia University, 2011)Google Scholar
  5. 5.
    Author Anderson Business Consultation, Zukai knowledge management (Toyo Keizai, Tokyo, 1999)Google Scholar
  6. 6.
    K.-I. Benta, A. Raru, M. Cremene, Ontology based affective context representation, in Proceedings of the 2007 Euro American Conference on Telematics and Information Systems (ACM, 2007), p. 46Google Scholar
  7. 7.
    L.F. Barrett, Are emotions natural kinds? Perspect. Psychol. Sci. 1(1), 28–58 (2006)CrossRefGoogle Scholar
  8. 8.
    L.F. Barrett, B. Mesquita, K.N. Ochsner, J.J. Gross, The experience of emotion. Ann. Rev. Psychol. 58, 373 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Bourdaud, R. Chavarriaga, F. Galn, J. del R. Millan, Characterizing the EEG correlates of exploratory behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 549–556 (2008)Google Scholar
  10. 10.
    D. Brickley, R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema (2004).
  11. 11.
    A.J. Caas, G. Hill, J. Lott, Support for Constructing Knowledge Models in CmapTools. Technical Report No. IHMC CmapTools 2003-02) (Institute for Human and Machine Cognition, Pensacola, FL, 2003)Google Scholar
  12. 12.
    G.A. Calvert, M.J. Brammer, Predicting consumer behavior: using novel mind-reading approaches. IEEE Pulse 3(3), 38–41 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Cao, Z. Cai, E. Shen, W. Shen, X. Chen, G. Gu, T. Shou, Quantitative analysis of brain optical images with 2D C0 complexity measure. J. Neurosci. Methods 159(1), 181–186 (2007)CrossRefGoogle Scholar
  14. 14.
    I. Cearreta, J.M. Lpez, N. Garay-Vitoria, Modelling multimodal context-aware affective interaction, in Proceedings of the Doctoral Consortium of the Second international Conference on ACII (2007), pp. 57–64Google Scholar
  15. 15.
    G. Chanel, J. Kronegg, D. Grandjean, T. Pun, Emotion assessment: arousal evaluation using EEGs and peripheral physiological signals, in Multimedia Content Representation, Classification and Security (Springer, 2006), pp. 530–537Google Scholar
  16. 16.
    H. Chaouchi, The Internet of Things: Connecting Objects (Wiley, 2013)Google Scholar
  17. 17.
    F. Chen, J. Xu, F. Gu, X. Yu, X. Meng, Z. Qiu, Dynamic process of information transmission complexity in human brains. Biol. Cybernet. 83(4), 355–366 (2000)CrossRefGoogle Scholar
  18. 18.
    Y.-L. Chi, S.-Y. Peng, C.-C. Yang, Creating Kansei engineering-based ontology for annotating and archiving photos database, in Human-Computer Interaction. Interaction Design and Usability (Springer, 2007), pp. 701–710Google Scholar
  19. 19.
    S. Claesen, R. Kitney, Estimation of the largest Lyapunov exponent of an RR interval and its use as an indicator of decreased autonomic heart rate control, in Computers in Cardiology 1994 (IEEE, 1994), pp. 133–136Google Scholar
  20. 20.
    R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, J.G. Taylor, Emotion recognition in human-computer interaction. IEEE Sign. Process. Mag. 18(1), 32–80 (2001)CrossRefGoogle Scholar
  21. 21.
    S.K. D’Mello, A. Graesser, Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features. User Model User-Adap. Inter. 20(2), 147–187 (2010)CrossRefGoogle Scholar
  22. 22.
    H.K. Dai, B. Mobasher, Using ontologies to discover domain-level web usage profiles. Semant. Web Min. 35 (2002)Google Scholar
  23. 23.
    T. Dalgleish, B.D. Dunn, D. Mobbs, Affective neuroscience: past, present, and future. Emot. Rev. 1(4), 355–368 (2009)CrossRefGoogle Scholar
  24. 24.
    T. Dalgleish, M.J. Power, J. Wiley, Handbook of Cognition and Emotion (Wiley Online Library, 1999)Google Scholar
  25. 25.
    R.J. Davidson, P. Ekman, C.D. Saron, J.A. Senulis, W.V. Friesen, Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. J. Pers. Soc. Psychol. 58(2), 330 (1990)CrossRefGoogle Scholar
  26. 26.
    R.J. Davidson, K.R. Scherer, H. Goldsmith, Handbook of Affective Sciences (Oxford University Press, 2003)Google Scholar
  27. 27.
    T.S. Dillon, A. Talevski, V. Potdar, E. Chang, Web of things as a framework for ubiquitous intelligence and computing, in Ubiquitous Intelligence and Computing (Springer, 2009), pp. 2–13Google Scholar
  28. 28.
    D. Dou, G. Frishkoff, J. Rong, R. Frank, A. Malony, D. Tucker, Development of NeuroElectroMagnetic ontologies (NEMO): a framework for mining brainwave ontologies, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007 (ACM, 2007), pp. 270–279Google Scholar
  29. 29.
    M. Eirinaki, M. Vazirgiannis, I. Varlamis, SEWeP: using site semantics and a taxonomy to enhance the Web personalization process, in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003 (ACM, 2003), pp. 99–108Google Scholar
  30. 30.
    P. Ekman, Emotions in the Human Faces, 2nd edn. (Cambridge University, Press, 1982)Google Scholar
  31. 31.
    P. Ekman, Are there Basic Emotions? (1992a)Google Scholar
  32. 32.
    P. Ekman, An argument for basic emotions. Cogni. Emot. 6(3–4), 169–200 (1992b)CrossRefGoogle Scholar
  33. 33.
    C. Fisher, P. Sanderson, Exploratory sequential data analysis: exploring continuous observational data. Interactions 3(2), 25–34 (1996)CrossRefGoogle Scholar
  34. 34.
    V. Francisco, P. Gervs, F. Peinado, Ontological reasoning to configure emotional voice synthesis, in Web Reasoning and Rule Systems (Springer, 2007), pp. 88–102Google Scholar
  35. 35.
    P. Fraternali, M. Matera, A. Maurino, Conceptual-level log analysis for the evaluation of web application quality, in Web Congress, 2003. Proceedings. First Latin American, 2003 (IEEE, 2003), pp. 46–57Google Scholar
  36. 36.
    V. Galunov, B. Lobanov, N. Zagoruiko, Ontology of the subject domain, in Speech Signals Recognition and Synthesis SPECOM (2004)Google Scholar
  37. 37.
    N. Gibbins, S. Harris, N. Shadbolt, Agent-based semantic web services. Web Semant. Sci. Serv. Agents World Wide Web 1(2), 141–154 (2004)CrossRefGoogle Scholar
  38. 38.
    P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)CrossRefGoogle Scholar
  39. 39.
    F. Hnig, A. Batliner, E. Nth, Real-time recognition of the affective user state with physiological signals, in Proceedings of the Doctoral Consortium, Affective Computing and Intelligent Interaction (2007)Google Scholar
  40. 40.
    B. Hjorth, EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)CrossRefGoogle Scholar
  41. 41.
    B. Hjorth, The physical significance of time domain descriptors in EEG analysis. Electroencephalogr. Clin. Neurophysiol. 34(3), 321–325 (1973)CrossRefGoogle Scholar
  42. 42.
    T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, M. Hirano, Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79(3), 204–210 (1991)CrossRefGoogle Scholar
  43. 43.
    Jena. Apache Jena. HP Labs Semantic Web Toolkit (2011).
  44. 44.
    Y. Jing, D. Jeong, D.-K. Baik, SPARQL graph pattern rewriting for OWL-DL inference queries. Knowl. Inf. Syst. 20(2), 243–262 (2009)CrossRefGoogle Scholar
  45. 45.
    C.M. Jones, T. Troen, Biometric valence and arousal recognition, in Proceedings of the 19th Australasian Conference on Computer-Human Interaction: Entertaining User Interfaces, 2007 (ACM, 2007), pp. 191–194Google Scholar
  46. 46.
    M. Kawasaki, Y. Yamaguchi, Effects of subjective preference of colors on attention-related occipital theta oscillations. Neuroimage 59(1), 808–814 (2012)CrossRefGoogle Scholar
  47. 47.
    G. Klyne, J.J. Carroll, Resource Description Framework (RDF): Concepts and Abstract Syntax (2004).
  48. 48.
    K.-E. Ko, H.-C. Yang, K.-B. Sim, Emotion recognition using EEG signals with relative power values and Bayesian network. Int. J. Control Autom. Syst. 7(5), 865–870 (2009)CrossRefGoogle Scholar
  49. 49.
    S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, I. Patras, Deap: a database for emotion analysis using physiological signals. IEEE Trans Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  50. 50.
    Kolmogorov. An entropy per unit time as a metric invariant of automorphisms, in Dokl. Akad. Nauk SSSR (1959), pp. 754–755Google Scholar
  51. 51.
    M. Kostyunina, M. Kulikov, Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26(4), 340–343 (1996)CrossRefGoogle Scholar
  52. 52.
    T. Kunii, J. Ma, R. Huang, Hyperworld modeling, in Proceedings of International Conference Visual Information Systems (VIS 96) (1996), pp. 1–8Google Scholar
  53. 53.
    J.M. Lpez, R. Gil, R. Garca, I. Cearreta, N. Garay, Towards an ontology for describing emotions, in Emerging Technologies and Information Systems for the Knowledge Society (Springer, 2008), pp. 96–104Google Scholar
  54. 54.
    M.D. Lewis, J.M. Haviland-Jones, L.F. Barrett, Handbook of Emotions (Guilford Press, 2010)Google Scholar
  55. 55.
    P. Lewis, H. Critchley, P. Rotshtein, R. Dolan, Neural correlates of processing valence and arousal in affective words. Cerebral Cortex 17(3), 742–748 (2007)CrossRefGoogle Scholar
  56. 56.
    J. Ma, R. Huang. Improving human interaction with a hyperworld, in Proceedings of the Pacific Workshop on Distributed Multimedia Systems (DMS’96) (1996), pp. 46–50Google Scholar
  57. 57.
    A. Maedche, S. Staab, Discovering conceptual relations from text, in Ecai, vol. 325 (2000), p. 27Google Scholar
  58. 58.
    A. Maedche, S. Staab, Ontology Learning (Springer, 2004)Google Scholar
  59. 59.
    Y.Y. Mathieu, Annotation of emotions and feelings in texts, in Affective Computing and Intelligent Interaction (Springer, 2005), pp. 350–357Google Scholar
  60. 60.
    D.L. McGuinness, F. Van Harmelen, OWL Web Ontology Language Overview (W3C Recommendation, 2004)Google Scholar
  61. 61.
    A. Mehrabian, J.A. Russell, An Approach to Environmental Psychology (The MIT Press, 1974)Google Scholar
  62. 62.
    R. Meo, P.L. Lanzi, M. Matera, R. Esposito, Integrating web conceptual modeling and web usage mining, in Advances in Web Mining and Web Usage Analysis (Springer, 2006), pp. 135–148Google Scholar
  63. 63.
    M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, D. Hazry, I. Zunaidi, Time-frequency analysis of EEG signals for human emotion detection, in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008 (Springer, 2008), pp. 262–265Google Scholar
  64. 64.
    M.A. Nicolaou, H. Gunes, M. Pantic, Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans Affect. Comput. 2(2), 92–105 (2011)CrossRefGoogle Scholar
  65. 65.
    E. Niedermeyer, The normal EEG of the waking adult, in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, vol. 167 (2005)Google Scholar
  66. 66.
    D. Oberle, B. Berendt, A. Hotho, J. Gonzalez, Conceptual user tracking, in Advances in Web Intelligence (Springer, 2003), pp. 155–164Google Scholar
  67. 67.
    R. Ohme, D. Reykowska, D. Wiener, A. Choromanska, Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2(1), 21 (2009)CrossRefGoogle Scholar
  68. 68.
    R. Ohme, D. Reykowska, D. Wiener, A. Choromanska, Application of frontal EEG asymmetry to advertising research. J. Econ. Psychol. 31(5), 785–793 (2010)CrossRefGoogle Scholar
  69. 69.
    A.M. Oliveira, M.P. Teixeira, I.B. Fonseca, M. Oliveira, Joint model-parameter validation of self-estimates of valence and arousal: Probing a differential-weighting model of affective intensity, in Proceedings of the 22nd Annual Meeting of the International Society for Psychophysics (2006), pp. 245–250Google Scholar
  70. 70.
    M. Pantic, L.J. Rothkrantz, Toward an affect-sensitive multimodal human-computer interaction. Proc. IEEE 91(9), 1370–1390 (2003)CrossRefGoogle Scholar
  71. 71.
    H. Peng, B. Hu, Q. Liu, Q. Dong, Q. Zhao, P. Moore, User-centered depression prevention: an EEG approach to pervasive healthcare, in 2011 IEEE 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2011a), pp. 325–330Google Scholar
  72. 72.
    H. Peng, B. Hu, Y. Qi, Q. Zhao, M. Ratcliffe, An improved EEG de-noising approach in electroencephalogram (EEG) for home care, in 2011 IEEE 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2011b), pp. 469–474Google Scholar
  73. 73.
    P.C. Petrantonakis, L.J. Hadjileontiadis, Adaptive extraction of emotion-related EEG segments using multidimensional directed information in time-frequency domain, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (IEEE, 2010), pp. 1–4Google Scholar
  74. 74.
    R.W. Picard, Affective computing: challenges. Int. J. Hum.-Comput. Stud. 59(1), 55–64 (2003)CrossRefGoogle Scholar
  75. 75.
    R.W. Picard, E. Vyzas, J. Healey, Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  76. 76.
    R. Pivik, R. Broughton, R. Coppola, R. Davidson, N. Fox, M. Nuwer, Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30(6), 547–558 (1993)CrossRefGoogle Scholar
  77. 77.
    J.R. Quinlan, C4. 5: Programs for Machine Learning, vol. 1 (Morgan kaufmann, 1993)Google Scholar
  78. 78.
    M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlin. Phenomena 65(1), 117–134 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    J.A. Russell, Core affect and the psychological construction of emotion. Psychol. Rev. 110(1), 145 (2003)CrossRefGoogle Scholar
  80. 80.
    J.A. Russell, M. Lewicka, T. Niit, A cross-cultural study of a circumplex model of affect. J. Pers. Soc. Psychol. 57(5), 848 (1989)CrossRefGoogle Scholar
  81. 81.
    S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, D.D. Edwards, Artificial Intelligence: A Modern Approach, vol. 74 (Prentice hall Englewood Cliffs, 1995)Google Scholar
  82. 82.
    M. Sabeti, R. Boostani, S. Katebi, G. Price, Selection of relevant features for EEG signal classification of schizophrenic patients. Biomed. Sign. Process. Control 2(2), 122–134 (2007)CrossRefGoogle Scholar
  83. 83.
    P. Salovey, J.D. Mayer, Emotional intelligence. Imagination Cogn. Pers. 9(3), 185–211 (1989)CrossRefGoogle Scholar
  84. 84.
    N. Sebe, I. Cohen, T.S. Huang, Multimodal emotion recognition. Handb. Pattern Recogn. Comput. Vis. 4, 387–419 (2005)CrossRefGoogle Scholar
  85. 85.
    M. Shamsfard, A.A. Barforoush, Learning ontologies from natural language texts. Int. J. Hum.-Comput. Stud. 60(1), 17–63 (2004)CrossRefGoogle Scholar
  86. 86.
    C.E. Shannon, A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  87. 87.
    C. Stickel, M. Ebner, S. Steinbach-Nordmann, G. Searle, A. Holzinger, Emotion detection: application of the valence arousal space for rapid biological usability testing to enhance universal access, in Universal Access in Human-Computer Interaction. Addressing Diversity (Springer, 2009), pp. 615–624Google Scholar
  88. 88.
    V. Stirbu, Towards a restful plug and play experience in the web of things, in 2008 IEEE International Conference on Semantic Computing (IEEE, 2008), pp. 512–517Google Scholar
  89. 89.
    A.J. Tomarken, R.J. Davidson, R.E. Wheeler, L. Kinney, Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency. Psychophysiology 29(5), 576–592 (1992)CrossRefGoogle Scholar
  90. 90.
    J. Wackermann, Towards a quantitative characterisation of functional states of the brain: from the non-linear methodology to the global linear description. Int. J. Psychophysiol. 34(1), 65–80 (1999)CrossRefGoogle Scholar
  91. 91.
    J. Wackermann, C. Allefeld, On the meaning and interpretation of global descriptors of brain electrical activity. Including a reply to X. Pei, et al. Int. J. Psychophysiol. 64(2), 199–210 (2007)CrossRefGoogle Scholar
  92. 92.
    T. Wehrle, K.R. Scherer, Towards computational modeling of appraisal theories, in Appraisal Processes in Emotion: Theory, Methods, Research (Oxford University Press, New York, 2001)Google Scholar
  93. 93.
    E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, G. Borriello, Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Comput. 13(3), 48–55 (2009)CrossRefGoogle Scholar
  94. 94.
    Y-H. Yang, Y-C. Lin, Y-F, Su, H.H. Chen, Music emotion classification: a regression approach, in 2007 IEEE International Conference on Multimedia and Expo (IEEE, 2007), pp. 208–211Google Scholar
  95. 95.
    E.Yokomatsu, S-i. Ito, Y. Mitsukura, J. Cao, M.A. Fukumi, Design of the preference acquisition detection system, in SICE, 2007 Annual Conference (IEEE, 2007), pp. 2804–2807Google Scholar
  96. 96.
    C. Yu, P.M. Aoki, A. Woodruff, Detecting User Engagement in Everyday Conversations. arXiv preprint cs/0410027 (2004)Google Scholar
  97. 97.
    Z. Zeng, M. Pantic, G.I. Roisman, T.S. Huang, A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)CrossRefGoogle Scholar
  98. 98.
    X.-S. Zhang, R.J. Roy, Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans. Biomed. Eng. 48(3), 312–323 (2001)CrossRefGoogle Scholar
  99. 99.
    N. Zhong, J. Liu, Y. Yao, In search of the wisdom web. IEEE Comput. 35(11), 27–31 (2002)CrossRefGoogle Scholar
  100. 100.
    N. Zhong, J. Liu, Y. Yao. Web intelligence (WI): a new paradigm for developing the Wisdom Web and social network intelligence, in Web Intelligence (Springer, 2003), pp. 1–16Google Scholar
  101. 101.
    N. Zhong, J.H. Ma, R.H. Huang, J.M. Liu, Y.Y. Yao, Y.X. Zhang, J.H. Chen, Research challenges and perspectives on Wisdom Web of Things (W2T). J. Supercomput. 1–21 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jing Chen
    • 1
  • Bin Hu
    • 1
    Email author
  • Philip Moore
    • 1
  • Xiaowei Zhang
    • 1
  1. 1.School of Information Science and Engineering, Lanzhou UniversityLanzhouChina

Personalised recommendations