Attention Inspired Resource Allocation for Heterogeneous Sensors in Internet of Things

  • Huansheng NingEmail author
  • Hong Liu
  • Ali Li
  • Laurence T. Yang
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE)


Internet of things (IoT) is an attractive paradigm for intelligent interconnections among ubiquitous things through physical-cyber-social space (CPSS). During the things’ cross-space interactions, heterogeneous sensors establish pervasive sensing during with the mapping from physical objects into the corresponding cyber entities in the cyber space. Such mapping depends on the available system resources, and thus resource allocation becomes challenging for resource-constrained IoT applications. In this chapter, human attention (including sustained attention, selective attention, and divided attention) is considered as limited cognitive resource to establish an attention-aware resource framework in IoT. The consideration of a heterogeneous sensors based IoT system model is built with ubiquitous attributes, and a human attention inspired resource allocation scheme is presented to facilitate the dynamic resource interaction.


Resource Allocation Sustained Attention Attention Resource Divided Attention Dynamic Resource Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank IEEE’s authorization to use some related materials from Ref. [13].


  1. 1.
    L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 27872805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Georgakopoulos, K. Tsagkaris, D. Karvounas, P. Vlacheas, P. Demestichas, Cognitive networks for future internet: status and emerging challenges. IEEE Veh. Technol. Mag. 7(3), 4856 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Ning, Z. Wang, Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461463 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Ma, J. Wen, R. Huang, B. Huang, Cyber-individual meets brain informatics. IEEE Intell. Syst. 26(5), 3037 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Zhong, J. Ma, R. Huang, J. Liu, Y. Yao, Y. Zhang, J. Chen, Research challenges and perspectives on wisdom web of things (W2T). J. Supercomput. (2010). doi: 10.1007/s11227-010-0518-8
  6. 6.
    L. Atzori, A. Iera, G. Morabito, SIoT: giving a social structure to the internet of things. IEEE Commun. Lett. 15(11), 11931195 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Sehgal, V. Perelman, S. Kuryla, J. Schonwalder, Management of resource constrained devices in the internet of things. IEEE Commun. Mag. 50(12), 144–149 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Zheng, F. Hu, W. Wang, W. Xiang, M. Dohler, Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Commun. Mag. 50(7), 184–192 (2012)CrossRefGoogle Scholar
  9. 9.
    P.T. Endo, A.V. de Almeida Palhares, N.M. Pereira, G.E. Goncalves, D. Sadok, J. Kelner, B. Melander, J.E. Mangs, Resource allocation for distributed cloud: concepts and research challenges. IEEE Netw. 25(4), 42–46 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Hildmann, S. Nicolas, F. Saffre, A bio-inspired resource-saving approach to dynamic client-server association. IEEE Intell. Syst. 27(6), 17–25 (2012)CrossRefGoogle Scholar
  11. 11.
    R.T. Kellogg, Cognitive Psychology, 2nd edn (Sage Publications, 2003)Google Scholar
  12. 12.
    J. Nocedal, S.J. Wright, Numerical Optimization (Springer Verlag, 1999)Google Scholar
  13. 13.
    H. Ning et al., Human-attention inspired resource allocation for heterogeneous sensors in the web of things. IEEE Intell. Syst. 28(6), 20–28 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Huansheng Ning
    • 1
    Email author
  • Hong Liu
    • 2
  • Ali Li
    • 1
  • Laurence T. Yang
    • 3
    • 4
  1. 1.University of Science and Technology BeijingBeijingChina
  2. 2.Engineering LaboratoryRun Technologies Co., Ltd. BeijingBeijingChina
  3. 3.Huazhong University of Science and TechnologyWuhanChina
  4. 4.St. Francis Xavier UniversityAntigonishCanada

Personalised recommendations