Advertisement

Research Challenges and Perspectives on Wisdom Web of Things (W2T)

  • Ning ZhongEmail author
  • Jianhua Ma
  • Runhe Huang
  • Jiming Liu
  • Yiyu Yao
  • Yaoxue Zhang
  • Jianhui Chen
Chapter
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE)

Abstract

The rapid development of the Internet and the Internet of Things accelerates the emergence of the hyper world. It has become a pressing research issue to realize the organic amalgamation and harmonious symbiosis among humans, computers and things in the hyper world, which consists of the social world, the physical world and the information world (cyber world). In this chapter, the notion of Wisdom Web of Things (W2T) is proposed in order to address this issue. As inspired by the material cycle in the physical world, the W2T focuses on the data cycle, namely “from things to data, information, knowledge, wisdom, services, humans, and then back to things.” A W2T data cycle system is designed to implement such a cycle, which is, technologically speaking, a practical way to realize the harmonious symbiosis of humans, computers and things in the emergin hyper world.

Keywords

Ubiquitous Computing Data Cycle Brain Data Ubiquitous Computing Technology Transparent Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work is partially supported by the National Natural Science Foundation of China (Number: 60905027), Beijing Natural Science Foundation (4102007), China Scholarship Council (CSC) (File No. 2009654018), Open Foundation of Key Laboratory of Multimedia and Intelligent Software (Beijing University of Technology), Beijing, Support Center for Advanced Telecommunications Technology Research, Foundation (SCAT), Japan, and JSPS Grants-in-Aid for Scientific Research (No.21500081), Japan.

References

  1. 1.
    Australian EEG Database. http://eeg.newcastle.edu.au/inquiry/
  2. 2.
    M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing (Technical report, EECS Department, University of California, Berkeley, 2009)Google Scholar
  3. 3.
    T. Berners-Lee, J. Hendler, O. Lassila, The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Casas, R.B. Marin, A. Robinet, A.R. Delgado, A.R. Yarza, J. McGinn, R. Picking, V. Grout, User modelling in ambient intelligence for elderly and disabled people, in Proceedings of the 11th International Conference on Computers Helping People with Special Needs (ICCHP 2008) (2008), pp. 114–122Google Scholar
  5. 5.
    H. Chaouchi, The Internet of Things-Connecting Objects to the Web (ISTE Ltd., Wiley, 2010)Google Scholar
  6. 6.
    J.H. Chen, N. Zhong, Data-brain modeling based on brain informatics methodology, in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI’08) (2008), pp. 41–47Google Scholar
  7. 7.
    J.H. Chen, N. Zhong, Data-brain modeling for systematic brain informatics, in Proceedings of the 2009 International Conference on Brain Informatics (BI 2009) (2009), pp. 182–193Google Scholar
  8. 8.
    J.H. Chen, N. Zhong, R.H. Huang, Towards Systematic human brain data management using a data-brain based GLS-BI system, in Proceedings of the 2010 International Conference on Brain Informatics (BI 2010) (2010), pp. 365–376Google Scholar
  9. 9.
    R.J. Davidson, W. Irwin, M.J. Anderle, N.H. Kalin, The neural substrates of affective processing in depressed patients treated with venlafaxine. Am. J. Psychiatry. 160(1), 64–75 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Dillon, A. Talevski, V. Potdar, E. Chang. Web of things as a framework for ubiquitous intelligence and computing, in Proceedings of the 6th International Conference on Ubiquitous Intelligence and Computing (2009), pp. 1–10Google Scholar
  11. 11.
    D. Fensel, F. van Harmelen, Unifying reasoning and search to web scale. IEEE Internet Comput. 11(2), 96, 94–95 (2007)Google Scholar
  12. 12.
    D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E.D. Valle, F. Fischer, Z.S. Huang, A. Kiryakov, T.K. Lee, L. Schooler, V. Tresp, S. Wesner, M. Witbrock, N. Zhong, Towards LarKC: a platform for web-scale reasoning, in Proceedings of the 2008 IEEE International Conference on Semantic Computing (2008), pp. 524–529Google Scholar
  13. 13.
    I. Foster, C. Kesselman, The grid: blueprint for a new computing infrastructure (Morgan Kaufmann, 1999)Google Scholar
  14. 14.
    I. Foster, C. Kesselman, The grid 2: blueprint for a new computing infrastructure (Morgan Kaufmann, 2003)Google Scholar
  15. 15.
  16. 16.
    M.X. Gao, C.N. Liu, A constraints-based semantic mapping method from natural language questions to OWL. Acta Electronica Sinica 35(8), 1598–1602 (2007)Google Scholar
  17. 17.
    B. Hayes, Cloud computing. Commun. ACM 7, 9–11 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Heckmann. Ubiquitous user modeling for situated interaction, in Proceedings of the 8th International Conference on User Modeling (Springer LNCS 2109, Sonthofen, Germany, 2001), pp. 280–282Google Scholar
  19. 19.
    D. Heckmann, A. Krueger, A User modeling Markup Language (UserML) for ubiquitous computing, in Proceedings of the 9th International Conference on User Modeling, Johnstown, Pennsylvania, USA (2003), pp. 393–397Google Scholar
  20. 20.
    J. Hendler, Web 3.0: chicken farms on the semantic web. Computer 41(1), 106–108 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Henricksen, J. Indulska, A. Rakotonirainy, Modeling context information in pervasive computing systems, in Proceedings of the 1st International Conference on Pervasive Computing, Springer LNCS 2414, Zurich, Switzerland (2002), pp. 167–180Google Scholar
  22. 22.
    J. Hu, N. Zhong, Organizing multiple data sources for developing intelligent e-business portals. Data Min. Knowl. Discov. 12(2–3), 127–150 (2006). SpringerMathSciNetCrossRefGoogle Scholar
  23. 23.
    R.H. Huang, J.H. Ma, Homelog based kid’s activity awareness, in Proceedings of the 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, Athens, Greece (2009), pp. 591–596Google Scholar
  24. 24.
  25. 25.
    W. Irwin, M.J. Anderle, H.C. Abererombie, M.S. Stacey, N.H. Kalin, R.J. Davidson, Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain. NeuroImage 21(2), 674–86 (2004)CrossRefGoogle Scholar
  26. 26.
    E. Kim, J. Choi. An ontology-based context model in a smart home, in Proceedings of the 2006 International Conference on Computational Science and Its Applications (ICCSA 2006) (2006), pp. 11–20Google Scholar
  27. 27.
    E.J. Ko, H.J. Lee, J.W. Lee, Ontology-based context modeling and reasoning for U-healthCare. IEICE Trans. Inf. Syst. E90–D(8), 1262–1270 (2007)Google Scholar
  28. 28.
    T.L. Kunii, J.H. Ma, R.H. Huang, Hyperworld modeling, in Proceedings of the International Conference on Visual Information Systems (VIS’96) (1996), pp. 1—8Google Scholar
  29. 29.
    C.E. Landwehr, Green computing. IEEE Secur. Priv. 3(6), 3 (2005)CrossRefGoogle Scholar
  30. 30.
    O. Lassila, J. Hendler, Embracing "Web 3.0". IEEE Internet Comput. 11(3), 90–93 (2007)CrossRefGoogle Scholar
  31. 31.
    W.B. Li, N. Zhong, Y.Y. Yao, J.M. Liu, An operable email based intelligent personal assistant. World Wide Web 12(2), 125–147 (2009). SpringerCrossRefGoogle Scholar
  32. 32.
    P.P. Liang, Y.H. Yang, S.F. Lu, K.C. Li, N. Zhong, The role of the DLPFC in inductive reasoning of MCI patient and normal aging: an fMRI study. Sci. China Ser. C Life Sci. 39(7), 711–716 (2009)Google Scholar
  33. 33.
    P.P. Liang, N. Zhong, S.F. Lu, J.M. Liu, ERP characteristics of sentential inductive reasoning in time and frequency domains. Cogn. Syst. Res. 11(1), 67–73 (2010)CrossRefGoogle Scholar
  34. 34.
    J.M. Liu, N. Zhong, Y.Y. Yao, Z.W. Ras, The wisdom web: new challenges for Web intelligence (WI). J. Intell. Inf. Syst. 20(1), 5–9 (2003)CrossRefGoogle Scholar
  35. 35.
    J.M. Liu, Web Intelligence (WI): what makes wisdom web?, in Proceedings of Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03) (2003), pp. 1596–1601Google Scholar
  36. 36.
    J.M. Liu, X. Jin, K.C. Tsui, Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling (Springer, 2005)Google Scholar
  37. 37.
    J.H. Ma, R.H. Huang, Improving human interaction with a hyperworld, in Proceedings of the Pacific Workshop on Distributed Multimedia Systems (DMS’96) (1996), pp. 46–50Google Scholar
  38. 38.
    J.H. Ma, Smart u-Things-challenging real world complexity. IPSJ Symp. Ser. 2005(19), 146–150 (2005)Google Scholar
  39. 39.
    J.H. Ma, L.T. Yang, B.O. Apduhan, R.H. Huang, L. Barolli, M. Takizawa, Towards a smart world and ubiquitous intelligence: a walkthrough from smart things to smart hyperspaces and UbicKids. Int. J. Pervasive Comput. Commun. 1(1), 53–68 (2005)CrossRefGoogle Scholar
  40. 40.
    J.H. Ma, Smart u-Things and ubiquitous intelligence, in Proceedings of the 2nd International Conference on Embedded Software and Systems (ICESS 2005) (2005), p. 776Google Scholar
  41. 41.
    J.H. Ma, Q.F. Zhao, V. Chaudhary, J.D. Cheng, L.T. Yang, R.H. Huang, Q. Jin, Ubisafe computing: vision and challenges (I), in Proceedings of the 3rd International Conference on Autonomic and Trusted Computing (ATC 2006) (2006), pp. 386–397Google Scholar
  42. 42.
    J.H. Ma. Spacelog concept and issues for novel u-Services in smart spaces, in Proceedings of the 2nd International Conference on Future Generation Communication and Networking Symposia (2008), pp. 89–92Google Scholar
  43. 43.
    C.J.L. Murray, A.D. Lopez, The Global Burden of Disease: A Comprehensive Assessment of Cambridge (USA) (Harvard University Press, 1996), pp. 412–417, 445–448, 553–556, 808–811Google Scholar
  44. 44.
    Neocortical Microcircuit Database. http://microcircuit.epfl.ch
  45. 45.
    R. Ogle, Smart World: Breakthrough Creativity and the New Science of Ideas (Harvard Business School Press, Boston, MA, 2007)Google Scholar
  46. 46.
    Olfactory Receptor Database. http://senselab.med.yale.edu/ORDB/default.asp
  47. 47.
  48. 48.
    T. O’Reilly. What is Web 2.0: design patterns and business models for the next generation of software. Commun. Strateg. 1, 17–37 (2007)Google Scholar
  49. 49.
    S. Posse, D. Fitzgerald, K. Gao, U. Habel, D. Rosenberg, G.J. Moore, F. Schneider, Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage 18(3), 760–768 (2003)CrossRefGoogle Scholar
  50. 50.
    H. Seiho, A couple responding to children’s problems. Child Psychol. 805 (2004)Google Scholar
  51. 51.
    M.P. Singh, M.N. Huhns, Service-Oriented Computing (Wiley, 2005)Google Scholar
  52. 52.
    V. Stirbu, Towards a RESTful plug and play experience in the Web of things, in Proceedings of the 2008 IEEE International Conference on Semantic Computing (2008), pp. 512–517Google Scholar
  53. 53.
    Y.L. Su, L. Zheng, N. Zhong, C.N. Liu, J.M. Liu, Distributed reasoning based on Problem Solver Markup Language (PSML)—a demonstration through extended OWL, in Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’05) (2005), pp. 208–213Google Scholar
  54. 54.
    K. Takata, J.H. Ma, B.O. Apduhan, A dangerous location aware system for assisting kids safety care, in Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06) (2006), pp. 657–662Google Scholar
  55. 55.
    P.W. Tian, Y.X. Zhang, Y.Z. Zhou, L.T. Yang, M. Zhong, L.K. Weng, L. Wei, A novel service evolution approach for active services in ubiquitous computing. Int. J. Commun. Syst. 22(9), 1123–1151 (2009)CrossRefGoogle Scholar
  56. 56.
    E. Vildjiounaite, O. Kocsis, V. Kyllonen, B. Kladis. Context-dependent user modelling for smart homes, in Proceedings of the 11th International Conference on User Modeling (UM 2007) (2007), pp. 345–349Google Scholar
  57. 57.
    X. Wang, G. Chen, Complex network: small-world, scale-free and beyond. IEEE Circ. Syst. Mag. 3(2), 6–20 (2003)CrossRefGoogle Scholar
  58. 58.
    X.H. Wang, D.Q. Zhang, T. Gu, H.K. Pung, Ontology based context modeling and reasoning using OWL, in Proceedings of the 2nd IEEE Annual Conference on Pervasive Computing and Communications Workshops, IEEE CS Press, Orlando, Florida, USA (2004), pp. 18–22Google Scholar
  59. 59.
    P.W. Warren, From ubiquitous computing to ubiquitous intelligence. BT Technol. J. 22(2), 28–38 (2004)CrossRefGoogle Scholar
  60. 60.
    M. Weiser, The computer for the 21st century. Sci. Am. 265(3), 66–75 (1991)CrossRefGoogle Scholar
  61. 61.
    M. Weiser, Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)CrossRefGoogle Scholar
  62. 62.
    E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, G. Borriello, Building the internet of things using RFID. IEEE Internet Comput. 33(3), 48–55 (2009)CrossRefGoogle Scholar
  63. 63.
    J. Wen, K. Ming, F.R. Wang, B.X. Huang, J.H. Ma, Cyber-I: vision of the individual’s counterpart on cyberspace, in Proceedings of the 8th IEEE International Conference on Dependable, Autonomic and Secure Computing (2009), pp. 295–302Google Scholar
  64. 64.
    J. Williams, L. Curtis, Green: the new computing coat of arms. IT Prof. 10(1), 12–16 (2008)CrossRefGoogle Scholar
  65. 65.
    W.J. Xu, New Approaches in Epidemiology and Treatment of Depression: With a Case Report (The medicine of Zhejinag University (Psychiatry), 2007)Google Scholar
  66. 66.
    Y.Y. Yao, Granular computing: basic issues and possible solutions, in Proceedings of the 5th Joint Conference on Information Sciences (1999), pp. 186–189Google Scholar
  67. 67.
    Y.Y. Yao, N. Zhong, J.M. Liu, S. Ohsuga, Web Intelligence (WI): research challenges and trends in the new information age, in N. Zhong, Y.Y. Yao, J. Liu, S. Ohsuga (eds.), Web Intelligence: Research and Development, Springer, LNAI 2198 (2001)Google Scholar
  68. 68.
    Y.Y. Yao, N. Zhong, Granular computing. Encycl. Comput. Sci. Eng. 3, 1446–1453 (2009). WileyGoogle Scholar
  69. 69.
    Y. Zeng, Y. Wang, Z.S. Huang, N. Zhong, Unifying Web-scale search and reasoning from the viewpoint of granularity, in Proceedings of the 2009 International Conference on Active Media Technology, Springer, LNCS 5820 (2009), pp. 418–429Google Scholar
  70. 70.
    Y. Zeng, N. Zhong, Y. Wang, Y.L. Qin, Z.S. Huang, H.Y. Zhou, Y.Y. Yao, F. von. Harmelen, User-centric query refinement and processing using granularity based strategies. Knowl. Inf. Syst. (2010) (in press, Springer)Google Scholar
  71. 71.
    Y.X. Zhang, C.H. Fang, Actives Services: Concepts, Architecture and Implementation (Thomson Learning Press, Washington, 2005)Google Scholar
  72. 72.
    Y.X. Zhang, Y.Z. Zhou, Transparent computing: a new paradigm for pervasive computing, in Proceedings of the 3rd International Conference on Ubiquitous Intelligence and Computing (UIC 2006) (2006), pp. 1–11Google Scholar
  73. 73.
    Y.X. Zhang, L.T. Yang, Y.Z. Zhou, W.Y. Kuang, Information security underlying transparent computing: impacts, visions and challenges. Web Intell. Agent Syst. 8(2), 203–217 (2010). IOS PressGoogle Scholar
  74. 74.
    N. Zhong, J.M. Liu, Y.Y. Yao, S. Ohsuga. Web Intelligence (WI), in Proceedings of the 24th IEEE Computer Society International Computer Software and Applications Conference (COMPSAC 2000) (2000), pp. 469–470Google Scholar
  75. 75.
    N. Zhong, J.M. Liu, Y.Y. Yao, In search of the Wisdom Web. IEEE Comput. 35(11), 27–31 (2002)CrossRefGoogle Scholar
  76. 76.
    N. Zhong, J.M. Liu, Y.Y. Yao, Web Intelligence (WI): a new paradigm for developing the Wisdom Web and social network intelligence, in Web Intelligence (Springer, 2003), pp. 1–16Google Scholar
  77. 77.
    N. Zhong, J.M. Liu, Y.Y. Yao, Web Intelligence (Springer, 2003)Google Scholar
  78. 78.
    N. Zhong. Building a brain-informatics portal on the wisdom web with a multi-layer grid: a new challenge for web intelligence research, in V. Torra, Y. Narukawa, S. Miyamoto (eds.) Modeling Decisions for Artificial Intelligence (Springer, LNAI 3558, 2005), pp. 24–35Google Scholar
  79. 79.
    N. Zhong, Impending brain informatics research from web intelligence perspective. Int. J. Inf. Technol. Decis. Mak. 5(4), 713–727 (2006). World ScientificCrossRefGoogle Scholar
  80. 80.
    N. Zhong, J.M. Liu, Y.Y. Yao, J.L. Wu, S.F. Lu, Y.L. Qin, K.C. Li, B. Wah, Web intelligence meets brain informatics, in N. Zhong et al. (eds.), Web Intelligence Meets Brain Informatics (Springer LNCS 4845, Sate-of-the-Art Survey, 2006), pp. 1–31Google Scholar
  81. 81.
    N. Zhong, J.M. Liu, Y.Y. Yao, Envisioning intelligent information technologies through the prism of web intelligence. Commun. ACM 50(3), 89–94 (2007)CrossRefGoogle Scholar
  82. 82.
    N. Zhong, Ways to develop human-level web intelligence: a brain informatics perspective, in E. Franconi, M. Kifer, W. May (eds.), The Semantic Web: Research and Applications (Springer LNCS 4519, 2007), pp. 27–36Google Scholar
  83. 83.
    N. Zhong J.M. Liu, Y.Y. Yao, Web Intelligence (WI). Encycl. Comput. Sci. Eng. 5, 3062–3072 (2009, Wiley)Google Scholar
  84. 84.
    N. Zhong, P.P. Liang, Y.Y. Qin, S.F. Lu, Y.H. Yang, K.C. Li, Neural substrates of data-driven scientific discovery: an fMRI study during performance of number series completion task. Sci. China Ser. C Life Sci. 39(3), 1–8 (2009)Google Scholar
  85. 85.
    Y.Z. Zhou, Y.X. Zhang, Transparent Computing: Concepts, Architecture, and Implementation (Cengage Learning, 2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ning Zhong
    • 1
    • 2
    Email author
  • Jianhua Ma
    • 7
  • Runhe Huang
    • 7
  • Jiming Liu
    • 3
    • 4
  • Yiyu Yao
    • 3
    • 5
  • Yaoxue Zhang
    • 8
  • Jianhui Chen
    • 3
    • 6
  1. 1.Department of Life Science and InformaticsMaebashi Institute of TechnologyMaebashi-CityJapan
  2. 2.Beijing Advanced Innovation Center for Future Internet Technology, The International WIC InstituteBeijing University of TechnologyBeijingChina
  3. 3.International WIC InstituteBeijing University of TechnologyBeijingChina
  4. 4.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong SAR
  5. 5.Department of Computer ScienceUniversity of ReginaReginaCanada
  6. 6.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  7. 7.Faculty of Computer and Information SciencesHosei UniversityTokyoJapan
  8. 8.Key Laboratory of Pervasive Computing, Ministry of Education, and Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations