Advertisement

Towards Laser Spectroscopy of Superheavy Elements

  • H. BackeEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The sensitivity of laser spectroscopic methods has been increased over the past two decades dramatically so that today the spectroscopy of superheavy elements appears on the horizon as a realistic option. For elements with Z > 100 no experimental atomic or ionic level structure information is known so far. These elements cannot be bread in high flux nuclear power reactors via successive neutron capture and \(\beta ^-\) decay but must be produced in accelerator-based nuclear fusion-evaporation reactions. Laser spectroscopic investigations at low rates take advantage of the storage of ions or atoms in rare gas traps. A first successful experiment was conducted only recently for the element nobelium with the atomic number Z = 102 behind the velocity filter SHIP at GSI in Darmstadt, Germany, applying the RAdioactive decay Detected Resonance Ionization Spectroscopy (RADRIS) method. The discovery of the \(7s^2~^1S_0\) \(\rightarrow \) \(7s\,7p~^1P_1\) optical transition opens up the possibility to measure the ionization potential, isotope shifts, or even the hyperfine splitting for \(^{252,253,254}\)No isotopes. The high precision of laser spectroscopic methods is a challenge for state-of-the-art relativistic many body calculations of the level structure.

Keywords

Laser spectroscopy at superheavy elements Radiation Detected Resonance Ionization Spectroscopy (RADRIS) element nobelium (\(\mathrm{{Z}} = 102\)

References

  1. 1.
    H. Backe, P. Kunz, W. Lauth, A. Dretzke, R. Horn, T. Kolb, M. Laatiaoui, M. Sewtz, D. Ackermann, M. Block, F. Herfurth, F.P. Heßberger, S. Hofmann, R. Mann, Towards optical spectroscopy of the element nobelium (Z = 102) in a buffer gas cell. First on-line experiments on \(^{155}\)Yb at the velocity filter SHIP with a novel ion collection and atom re-evaporation method of high efficiency. Eur. Phys. J. D 45, 99–106 (2007)Google Scholar
  2. 2.
    H. Backe, W. Lauth, M. Block, M. Laatiaoui, Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492–517 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    A. Borschevsky, E. Eliav, M.J. Vilkas, Y. Ishikawa, U. Kaldor, Predicted spectrum of atomic nobelium. Phys. Rev. A 75(042514), 1–6 (2007)Google Scholar
  4. 4.
    J.P. Desclaux, Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atomic Data Nucl. Data Tables 12, 311–406 (1973)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Dzuba, M.S. Safronova, U.I. Safronova, Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A 90(012504), 1–9 (2014)Google Scholar
  6. 6.
    N.M. Edelstein, J. Fuger, J.J. Katz, L.R. Morss, Summary and comparison of properties of the actinide and transactinide elements, in The Chemistry of the Actinide and Transactinide Elements, vol. 3, 3rd edn. ed. by J. Fuger L.R. Morss, M. Edelstein (Springer, 2008). Chapter 15.4.1, P.O. Box 17, 3300 AA Dordrecht, The NetherlandsGoogle Scholar
  7. 7.
    E. Eliaev, S. Fritzsche, U. Kaldor, Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518–550 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L.S. Goodman, H. Diamond, H.E. Stanton, M.S. Fred, \(g_J\) Value for the atomic ground state of fermium. Phys. Rev. A 4, 473–475 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    P. Indelicato, J.P. Santos, S. Boucard, J.-P. Desclaux, QED and relativistic corrections in superheavy elements. Eur. Phys. J. D 45, 155–170 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Laatiaoui, W. Lauth, H. Backe, M. Block, D. Ackermann, B. Cheal, P. Chhetri, Ch. Düllmann, P. van Duppen, J. Even, R. Ferrer, F. Giacoppo, St. Götz, F.P. Heßberger, M. Huyse, O. Kaleja, J. Khuyagbaatar, P. Kunz, F. Lautenschlger, A.K. Mistry, S. Raeder, E.M. Ramirez, Th. Walther, C. Wraith, A. Yakushev, Atom-at-a-time laser resonance ionization spectroscopy of nobelium. accepted for publication in NATURE (2016)Google Scholar
  12. 12.
    F. Lautenschläger, P. Chhetri, D. Ackermann, H. Backe, M. Block, B. Cheal, A. Clark, C. Droese, R. Ferrer, F. Giacoppo, S. Götz, F.P. Heßberger, O. Kaleja, J. Khuyagbaatar, P. Kunz, A.K. Mistry, M. Laatiaoui, W. Lauth, S. Raeder, Th. Walther, C. Wraith, Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instr. Meth. Phys. Res. B 383, 115–122 (2016)Google Scholar
  13. 13.
    W. Lauth, H. Backe, M. Dahlinger, I. Klaft, P. Schwamb, G. Schwickert, N. Trautmann, U. Othmer, Resonance ionization spectroscopy in a duffer gas cell with radioactive decay detection, demonstrated using \(^{208}\)Tl. Phys. Rev. Lett. 68, 1675–1678 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    V.S. Letokhov, Laser Photoionization Spectroscopy (Academic Press, INC., Orlando, San Diego, New York, Austin, Boston, London, Sydney, Tokyo, Toronto, Academic Press INC. (London) LTD., 24–28 Oval Road, London NW1 7DX, 1987), p. 58Google Scholar
  15. 15.
    Y. Liu, Y. Zou, R. Hutton, Atomic structure of the super-heavy element No I (\(Z = 102\)). Phys. Rev. A 76, 062503, 1–5 (2007)Google Scholar
  16. 16.
    G. Münzenberg, W. Faust, S. Hofmann, P. Armbruster, K. Güttner, H. Ewald, The velocity filter ship, a separator of unslowed heavy ion fusion products. Nucl. Instrum. Methods 161, 65–82 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nagame, J.V. Kratz, M. Schädel, Chemical studies of elements with Z\(\,\ge \)104 in liquid phase. Nucl. Phys. A 944, 614–639 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Yu. Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, K. Subotic, O.V. Ivanov, A. N. Voinov, V.I. Zagrebaev, Measurements of cross sections for the fusion-evaporation reactions \(^{204,206,207,208}\)Pb+\(^{48}\)Ca and \(^{207}\)Pb+\(^{34}\)S: decay properties of the even-even nuclides \(^{238}\)Cf and \(^{250}\)No. Phys. Rev. C 64, 054606, 1–8 (2001)Google Scholar
  19. 19.
    V. Pershina, Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578–613 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Schwerdtfeger, L.F. Paštekaa, A. Punnett, P.O. Bowman, Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551–577 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    M. Sewtz, H. Backe, A. Dretzke, G. Kube, W. Lauth, P. Schwamb, K. Eberhardt, P. Thörle, C. Grüning, N. Trautmann, P. Kunz, J. Lassen, G. Passler, C.Z. Dong, S. Fritzsche, R.G. Haire, First observation of atomic levels for the element fermium (Z = 100). Phys. Rev. Lett. 90(163002), 1–4 (2003)Google Scholar
  22. 22.
    J. Sugar, Revised ionization energies of the neutral actinides. J. Chem. Phys. 60, 4103 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    P.E. Toschek, W. Neuhauser, Einzelne Ionen fur die dopplerfreie Spektroskopie. Physikalische Blätter 36, 198–202, Juli, Nr. 7 1980Google Scholar
  24. 24.
    A. Türler, R. Eichler, A. Yakushev, Chemical studies of elements with Z\(\ge \)104 in gas phase. Nucl. Phys. A 944, 640–689 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    H. Walther, From a single ion to a mesoscopic system—crystallization of ions in Paul traps. Physica Scripta T59, 360–368 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    G. Werth, Optical spectroscopy in ion traps. Eur. Phys. J. D 45, 121–124 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    E.F. Worden, J. Blaise, M. Fred, N. Trautmann, J.-F. Wyart, Spectra and electronic structures of free actinide atoms and ions, in The Chemistry of the Actinide and Transactinide Elements, vol. 3, 3rd edn. ed. by J. Fuger L.R. Morss, M. Edelstein (Springer, 2008). Chapter 16.4, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Nuclear Physics, Johannes Gutenberg-UniversityMainzGermany

Personalised recommendations