Advertisement

25 Years of FRS Experiments and New Horizons

  • H. GeisselEmail author
  • G. Münzenberg
  • C. Scheidenberger
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Heavy-ion research and applications with the FRagment Separator FRS started with the inauguration experiment of the high-energy facilities at GSI 25 years ago. The FRS is primarily a powerful in-flight separator for short-lived nuclei created via projectile fragmentation and abrasion fission at energies up to 1 GeV/u. The ion-optical system of the FRS also represents a versatile magnetic spectrometer for precise momentum and angular measurements of ions up to a maximum magnetic rigidity of 18 Tm. High-resolution spectrometer experiments with exotic nuclei are a great challenge due to the large phase space of the fragments. Solutions are the use of dedicated ion-optical operating modes such as dispersion matching and isochronous conditions or methods based on reduction of the phase space by cooling, slowing down and energy bunching. Results of these spectrometer experiments belong to the high-lights of the research with the FRS and will be reported together with experiments planned with the next generation facility Super-FRS. Some historical remarks and motivations are included in this review. However, it is not the intension of this report to describe the complete scientific program covered with the FRS and planned with the Super-FRS.

Keywords

Exotic Nucleus Lawrence Berkeley National Laboratory Tensor Force Neutron Dripline Projectile Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

It is a great pleasure and our sincere wish to thank the experienced technical team of the FRS, in particular K.-H. Behr, A. Brünle, K. Burkhard and C. Karagiannis, for their competent and continuous hard work to prepare and run the experimental program with the FRS over the last 25 years. Furthermore, we would like to acknowledge the continuous support of all infrastructure and accelerator groups of GSI. Without this excellent technical work all scientific ideas and efforts would have not been successful. However, also the many valuable contributions of our scientific colleagues were essential for the experimental results reviewed in this article and are greatly appreciated. We are confident that also with the next-generation facility, the Super-FRS, many new discoveries in heavy ion research will be achieved.

References

  1. 1.
    N. Angert, C. Schmelzer, Kerntechnik 19(2), 57 (1977)Google Scholar
  2. 2.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    U. Mosel, W. Greiner, Z. Phys. 222, 261 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    H. Geissel et al., Nucl. Instr. Meth. B 70, 286 (1992)Google Scholar
  5. 5.
    H. Geissel et al., Nucl. Instr. Meth. B 204, 71 (2003)Google Scholar
  6. 6.
    G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    T.J.M. Symons et al., Phys. Rev. Lett. 42, 40 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B 160, 380 (1985)Google Scholar
  9. 9.
    K. Blasche, B. Franczak, in Proceedings of the 3rd European Particle Accelerator Conference (Berlin, 1992), p. 9Google Scholar
  10. 10.
    P. Kienle, Future accelerators and experimental facilities at GSI, Report GSI-84-18 (1984). ISSN:0171-4546Google Scholar
  11. 11.
    S. Marcowitz, L. Ratner, Rev. Sc. Instr. 33, 552 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    S.P. Ahlen, Rev. Mod. Phys. 52, 121 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    H. Geissel et al., Nucl. Instr. Meth. B 195, 3 (2002)Google Scholar
  14. 14.
    C. Scheidenberger et al., Phys. Rev. Lett. 73, 50 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    H. Geissel et al., Microsc. Microanal. 21(Supplement 4), 160 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Eichler, T. Sthlker, Phys. Rep. 439, 1 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    H. Geissel et al., Nucl. Instr. Meth. B 317, 277 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    C. Scheidenberger et al., Phys. Rev. Lett. 77, 3987 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    H. Weick et al., Phys. Rev. Lett. 85, 2725 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    T. Schwab, Ph.D. thesis, JLU Gieen (1991). GSI Report GSI-91-10. H. Geissel, C. Scheidenberger, H. Weick to be published https://web-docs.gsi.de/~weick/atima/
  22. 22.
    C. Scheidenberger et al., Nucl. Instr. Meth. B 142, 441 (1998)Google Scholar
  23. 23.
    T. Schwab, Ph.D. thesis, JLU Gieen (1991). GSI Report GSI-91-10. N. Iwasa et al., Nucl. Instr. Meth. B 126, 284 (1997); Nucl. Instr. Meth. B 269, 752 (2011)Google Scholar
  24. 24.
    G. Kraft, Progr. Part. Nucl. Phys. 45, 475 (2000); G. Kraft et al., in Proceedings of the EULIMA Workshop, Nice (1988)Google Scholar
  25. 25.
    W. Enghardt et al., Phys. Med. Biol. 37, 2127 (1992)CrossRefGoogle Scholar
  26. 26.
    W. Enghardt et al., Onkol. 175 (1999)Google Scholar
  27. 27.
    I. Tanihata et al., Scientific program of the super-FRS collaboration, GSI-Report 2014-4. doi: 10.1520/GR-2014-4
  28. 28.
    Y.L. Pivovarov et al., Nucl. Instr. Meth. B 119, 283 (1996)Google Scholar
  29. 29.
    E.I. Fiks et al., Nucl. Instr. Meth. B 314, 51 (2013)Google Scholar
  30. 30.
    T. Yamazaki et al., Z. Phys. A 355, 219 (1996)ADSGoogle Scholar
  31. 31.
    K. Itahashi et al., Phys. Rev. C 62, 025202 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    E. Friedman, G. Soff, J. Phys. G 11, L37 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    H. Toki, T. Yamazaki, Phys. Lett. B 213, 129 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    H. Toki, S. Hirenzaki, T. Yamazaki, R.S. Hayano, Nucl. Phys. A 501, 653 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    H. Gilg et al., Phys. Rev. C 62, 025201 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    T. Yamazaki et al., Phys. Rep. 514, 1 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    R.S. Hayano et al., Rev. Mod. Phys. 82, 2949 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    K. Itahashi et al., Prog. Theor. Phys. 128, 601 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    H. Nagahiro, Phys. Rev. C 87, 045201 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    A. Magel et al., Nucl. Instr. Meth. B 94, 548 (1994)Google Scholar
  43. 43.
    K.-H. Schmidt et al., Phys. Rev. C 87, 034601 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M.V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    K. Suemmerer, B. Blank, Phys. Rev. C 61, 034607 (2000); 86, 014601 (2012)Google Scholar
  46. 46.
    O.B. Tarasov, D. Bazin, Nucl. Phys. A 746, 411 (2004); Nucl. Instr. Meth. B 266, 4657 (2008)Google Scholar
  47. 47.
    M.V. Ricciardi et al., Phys. Rev. Lett. 90, 212302 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    D.J. Morrissey, Phys. Rev. C 39, 460 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    L. Shi, Phys. Rev. C 64, 034601 (2001)ADSCrossRefGoogle Scholar
  50. 50.
  51. 51.
    M. Bernas et al., Phys. Lett. B 331, 19 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    M. Bernas et al., Nucl. Phys. A 616, 352 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    T. Kurtukian-Nieto et al., Eur. Phys. J. A 50, 135 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    R. Schneider et al., Z. Phys. A 348, 241 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    C. Engelmann et al., Z. Phys. A 352, 351 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    S. Pietri et al., Nucl. Instr. Meth. B 261, 1079 (2007)Google Scholar
  58. 58.
    C.B. Hinke et al., Nature 486, 341 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    I. Hamamoto, H. Sagawa, Phys. Rev. C 48, R960 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    V.I. Goldansky, Nucl. Phys. 19, 482 (1960)CrossRefGoogle Scholar
  62. 62.
    M. Pfützner et al., Euro. Phys. J. A 14, 279 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    K. Miernik et al., Phys. Rev. C 76, 041304(R) (2007)ADSCrossRefGoogle Scholar
  65. 65.
    M. Ranjan et al., Europhys. Lett. 96, 52001 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    H. Geissel et al., Nucl. Instr. Meth. A 282, 247 (1989)Google Scholar
  67. 67.
    W.R. Plaß et al., Nucl. Instr. Meth. B 317, 457 (2013)Google Scholar
  68. 68.
    W.R. Plaß et al., Nucl. Instr. Meth. B 266, 4560 (2008)Google Scholar
  69. 69.
    T. Dickel et al., Nucl. Instr. Meth. A 777, 247 (1989)Google Scholar
  70. 70.
    W.R. Plaß et al., Phys. Scr. T 166, 014069 (2015)ADSCrossRefGoogle Scholar
  71. 71.
    T. Dickel et al., Phys. Lett. B 744, 137 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    S. Purushothaman et al., Nucl. Instr. Meth. B 266, 4488 (2008)Google Scholar
  73. 73.
    G. Huber et al., Phys. Rev. C 18, 2342 (1978)ADSCrossRefGoogle Scholar
  74. 74.
    T. Suzuki et al., Phys. Rev. Lett. 75, 3241 (1995)ADSCrossRefGoogle Scholar
  75. 75.
    T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)ADSCrossRefGoogle Scholar
  76. 76.
    P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)ADSCrossRefGoogle Scholar
  77. 77.
    P.G. Hansen, B.M. Sherrill, Nucl. Phys. A 693, 133 (2001)ADSCrossRefGoogle Scholar
  78. 78.
    P.G. Hansen, J.A. Tostevin, Rev. Nucl. Part. Sci. 53, 219 (2003)Google Scholar
  79. 79.
    W. Schwab et al., Z. Phys. A 350, 283 (1995)ADSCrossRefGoogle Scholar
  80. 80.
    H. Lenske, F. Hofmann, C.M. Keil, Rep. Prog. Nucl. Part. Phys. 46, 187 (2001)ADSCrossRefGoogle Scholar
  81. 81.
    D. Cortina-Gil et al., Phys. Lett. B 529, 36 (2002)ADSCrossRefGoogle Scholar
  82. 82.
    R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    G.D. Alkhazov et al., Phys. Rep. C 42, 89 (1978)ADSCrossRefGoogle Scholar
  84. 84.
    P. Egelhof et al., Eur. Phys. J. A 15, 27 (2002)ADSCrossRefGoogle Scholar
  85. 85.
    A.V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    H. Feldmeier et al., Phys. Rev. C 84, 054003 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    T. Neff, H. Feldmeier, Nucl. Phys. A 713, 311 (2003)ADSCrossRefGoogle Scholar
  89. 89.
    T. Myo et al., Prog. Theor. Phys. 117, 257 (2007)ADSCrossRefGoogle Scholar
  90. 90.
    H.J. Ong et al., Phys. Lett. B 725, 277 (2013)ADSCrossRefGoogle Scholar
  91. 91.
    B. Franzke, Nucl. Instr. Meth. B 24–25, 18 (1987)Google Scholar
  92. 92.
    B. Franzke, H. Geissel, G. Münzenberg, Mass Spectro. Rev. 27, 428 (2008)CrossRefGoogle Scholar
  93. 93.
    L. Chen et al., Nucl. Phys. A 882, 71 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    T. Radon et al., Nucl. Phys. A 677, 75 (2000)ADSCrossRefGoogle Scholar
  95. 95.
    Y.A. Litvinov et al., Nucl. Phys. A 756, 3 (2005)ADSCrossRefGoogle Scholar
  96. 96.
    H. Irnich et al., Phys. Rev. Lett. 75, 4182 (1995)ADSCrossRefGoogle Scholar
  97. 97.
    Y.A. Litvinov et al., Phys. Lett. B 573, 80 (2003)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    T. Ohtsubo et al., Phys. Rev. Lett. 95, 052501 (2005)ADSCrossRefGoogle Scholar
  99. 99.
    Z. Patyk et al., Phys. Rev. C 77, 014306 (2008)ADSCrossRefGoogle Scholar
  100. 100.
    P. Kienle et al., Phys. Lett. B 726, 638 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    M. Diwisch, Doctoral thesis, Justus-Liebig University Gieen (2015)Google Scholar
  102. 102.
    J. Trötscher et al., Nucl. Instr. Meth. B 70, 455 (1992); N. Kuzminchuk-Feuerstein et al., Nucl. Instr. Meth. A (2016, in print)Google Scholar
  103. 103.
    H. Geissel et al., Hypn. Int. 173, 49 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    R. Knöbel et al., Phys. Lett. B 744, 288 (2016)CrossRefGoogle Scholar
  105. 105.
    B. Sun et al., Nucl. Phys. A 812, 1 (2008)ADSCrossRefGoogle Scholar
  106. 106.
    H. Geissel et al., Microsc. Microanal. 21, 160 (2015)CrossRefGoogle Scholar
  107. 107.
    R. Knöbel et al., Eur. Phys. J. A (2016, in print)Google Scholar
  108. 108.
    J. Hubele et al., Z. Phys. A 340, 263 (1991)ADSCrossRefGoogle Scholar
  109. 109.
    T. Blaich et al., Nucl. Instr. Meth. A 314, 136 (1992)Google Scholar
  110. 110.
    L. Chulkov et al., Phys. Rev. Lett. 79, 201 (1997)ADSCrossRefGoogle Scholar
  111. 111.
    A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)Google Scholar
  112. 112.
    J.S. Winfield et al., Nucl. Instr. Meth. A 704, 76 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Gesellschaft Für Schwerionenforschung GSIDarmstadtGermany

Personalised recommendations