Advertisement

Superheavy Element Chemistry—New Experimental Results Challenge Theoretical Understanding

  • R. EichlerEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The most recent developments towards experimental gas phase chemical investigations of superheavy elements are elucidated. Second generation experiments with copernicium and flerovium are suggested. Here, the interactions of Cn and Fl with surfaces of different selenium allotropes will be compared to the behavior of elemental single atomic Hg in the same chemical system. Furthermore, recent developments for future chemical studies of SHE isotopes with sub-second half-lives using isothermal vacuum chromatography are illustrated. In the third part, the development of a second generation experiment addressing the bond stability in the fragile hexacarbonyl complex of seaborgium, the heaviest member of group 6 of the periodic table, are sketched. This talk was given on the occasion of the 80 anniversary of Prof. Walter Greiner.

Keywords

Periodic Table Superheavy Element Alpha Decay Carbonyl Complex Nuclear Fusion Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.M. Soby, IUPAC press release Dec. 30 2015: Discovery and assignment of elements with atomic numbers 113, 115, 117 and 118, http://www.iupac.org/fileadmin/user_upload/news/2015/IUPAC-Press-Release_30Dec2015.pdf
  2. 2.
    B. Fricke, W. Greiner, J.T. Waber, The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theor. Chim. Acta 21, 235–260 (1971)CrossRefGoogle Scholar
  3. 3.
    P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    P.A.M. Dirac, The quantum theory of the electron part II. Proc. R. Soc. Lond. A 118, 351–361 (1928)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    P.A.M. Dirac, Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Pyykkö, The physics behind chemistry and the periodic table. Chem. Rev. 112, 371–384 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Türler, V. Pershina, Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237–1312 (2013)CrossRefGoogle Scholar
  8. 8.
    R. Eichler, N.V. Aksenov, A.V. Belozerov, G.A. Bozhikov, V.I. Chepigin, S.N. Dmitriev, R. Dressler, H.W. Gäggler, V.A. Gorshkov, F. Haenssler, M.G. Itkis, A. Laube, V.Y. Lebedev, O.N. Malyshev, Y.T. Oganessian, O.V. Petrushkin, D. Piguet, P. Rasmussen, S.V. Shishkin, A.V. Shutov, A.I. Svirikhin, E.E. Tereshatov, G.K. Vostokin, M. Wegrzecki, A. Yeremin, Chemical characterization of element 112. Nature 447, 72–75 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    R. Eichler, N.V. Aksenov, A.V. Belozerov, G.A. Bozhikov, V.I. Chepigin, R. Dressler, S.N. Dmitriev, H.G. Gäggeler, V.A. Gorshkov, F. Haenssler, M.G. Itkis, V.Y. Lebedev, A. Laube, O.N. Malyshev, Ts. Oganessian, Yu. O.V. Petruschkin, D. Piguet, P. Rasmussen, A.A. Serov, S.V. Shishkin, A.V. Shutov, A.I. Svirikhin, E.E. Tereshatov, G.K. Vostokin, M. Wegrzecki, A.V. Yeremin, Thermochemical and physical properties of element 112. Angew. Chem. Int. Ed. 47(17), 3262–3266 (2008)Google Scholar
  10. 10.
    J. Even, A. Yakushev, C.E. Dullmann, H. Haba, M. Asai, T.K. Sato, H. Brand, A. Di Nitto, R. Eichler, F.L. Fan, W. Hartmann, M. Huang, E. Jager, D. Kaji, J. Kanaya, Y. Kaneya, J. Khuyagbaatar, B. Kindler, J.V. Kratz, J. Krier, Y. Kudou, N. Kurz, B. Lommel, S. Miyashita, K. Morimoto, K. Morita, M. Murakami, Y. Nagame, H. Nitsche, K. Ooe, Z. Qin, M. Schadel, J. Steiner, T. Sumita, M. Takeyama, K. Tanaka, A. Toyoshima, K. Tsukada, A. Turler, I. Usoltsev, Y. Wakabayashi, Y. Wang, N. Wiehl, S. Yamaki, Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491–1493 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Il’kaev, S.P. Vesnovskii, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions U-233,U-238, Pu-242, and Cm-248+Ca-48. Phys. Rev. C, 70 (2004)Google Scholar
  12. 12.
    Y.T. Oganessian, V.K. Utyonkov, Superheavy nuclei from \(^{48}\)Ca-induced reactions. Nucl. Phys. A 944, 62–98 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    R. Eichler, N.V. Aksenov, Y.V. Albin, A.V. Belozerov, G.A. Bozhikov, V.I. Chepigin, S.N. Dmitriev, R. Dressler, H.W. Gäggeler, V.A. Gorshkov, R.A. Henderson, A.M. Johnsen, J.M. Kenneally, V.Y. Lebedev, O.N. Malyshev, K.J. Moody, Y.T. Oganessian, O.V. Petrushkin, D. Piguet, A.G. Popeko, P. Rasmussen, A.A. Serov, D.A. Shaughnessy, S.V. Shishkin, A.V. Shutov, M.A. Stoyer, N.J. Stoyer, A.I. Svirikhin, E.E. Tereshatov, G.K. Vostokin, M. Wegrzecki, P.A. Wilk, D. Wittwer, A.V. Yeremin, Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Pershina, Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578–613 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    A. Yakushev, J.M. Gates, A. Turler, M. Schadel, C.E. Dullmann, D. Ackermann, L.L. Andersson, M. Block, W. Bruchle, J. Dvorak, K. Eberhardt, H.G. Essel, J. Even, U. Forsberg, A. Gorshkov, R. Graeger, K.E. Gregorich, W. Hartmann, R.D. Herzberg, F.P. Hessberger, D. Hild, A. Hubner, E. Jager, J. Khuyagbaatar, B. Kindler, J.V. Kratz, J. Krier, N. Kurz, B. Lommel, L.J. Niewisch, H. Nitsche, J.P. Omtvedt, E. Parr, Z. Qin, D. Rudolph, J. Runke, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thorle-Pospiech, J. Uusitalo, M. Wegrzecki, N. Wiehl, Superheavy element flerovium (element 114) is a volatile metal. inorg. Chem. 53, 1624–1629 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Eichler, B. Eichler, Thermochemical data from gas phase adsorption and methods of their estimation, in The Chemistry of Superheavy Elements, 2nd edn., ed. by M. Schädel, D. Shaugnessy. Springer (2014), pp. 375-413Google Scholar
  17. 17.
    A. Türler, R. Eichler, A. Yakushev, Chemical studies of elements with Z \(\ge \)104 in gas phase. Nucl. Phys. A 944, 640–689 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    N.M. Chiera, N. V. Aksenov, Y. V. Albin, G. A. Bozhikov, V. I. Chepigin, S. N. Dmitriev, R. Dressler, R. Eichler, V. Ya. Lebedev, O. N. Malyshev, O. V. Petrushkin, D. Piguet, Y.A. Popov, A. V. Sabel’nikov, P. Steinegger, A.I. Svirikhin, A. Türler, G.K. Vostokin, A. Vögele, A.V. Yeremin, Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium. Radiochim. Acta accepted (2016)Google Scholar
  19. 19.
    N.M. Chiera, R. Eichler, A. Vögele, A. Türler, Vapor deposition coating of fused silica tubes with amorphous selenium. Thin Solid Films 592, 8–13 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    N.M. Chiera, R. Eichler, D. Piguet, A. Vögele, A. Türler, Microscopic interaction of single atomic elemental Hg(g) with a sulfur surface. Radiochim, Acta in press (2016)Google Scholar
  21. 21.
    B. Eichler, Volatility of trans-actinide elements in range about Z = 114 (Prediction). Kernenergie 19, 307–311 (1976)Google Scholar
  22. 22.
    D. Wittwer, R. Dressler, R. Eichler et al., Thermal release rate studies of nuclear reaction products from polycrystalline metal matrices. Nucl. Instr. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 297, 86–93 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D. Wittwer, R. Dressler, R. Eichler et al., Prediction of the thermal release of transactinide elements \((112 < = Z < = 116)\) from metals. Radiochim. Acta 101(4), 211–219 (2013)Google Scholar
  24. 24.
    R. Eichler, M. Schädel, Adsorption of radon on metal surfaces: a model study for chemical investigations of elements 112 and 114. J. Phys. Chem. B 106, 5413–5420 (2002)CrossRefGoogle Scholar
  25. 25.
    I. Zvara, The Inorganic Radiochemistry of Heavy Elements: Methods for Studying Gaseous Compounds (Springer, 2008)Google Scholar
  26. 26.
    B. Eichler, H. Rossbach, Adsorption of volatile metals on metal-surfaces and its application in nuclear chemistry. 1. Calculation of adsorption enthalpies for hypothetical superheavy elements with Z around 114. Radiochim. Acta 33, 121–125 (1983)CrossRefGoogle Scholar
  27. 27.
    P. Steinegger, et al., Vacuum chromatography of Tl on SiO2 at the single-atom level. J. Phys. Chem. C 120, 7122–7132 (2016)Google Scholar
  28. 28.
    V. Pershina, in preparation (2016)Google Scholar
  29. 29.
    H. Haba, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, R. Sakai, T. Sumita, A. Yoneda, Y. Kasamatsu, Y. Komori, A. Shinohara, H. Kikunaga, H. Kudo, K. Nishio, K. Ooe, N. Sato, K. Tsukada, Production of \(^{265}\)Sg in the \(^{248}\)Cm(\(^{22}\)Ne,5n)\(^{265}\)Sg reaction and decay properties of two isomeric states in \(^{265}\)Sg. Phys. Rev. C 85, 024611 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    I. Usoltsev, R. Eichler*, Y. Wang, J. Even, A. Yakushev, H. Haba, M. Asai, H. Brand, A. Di Nitto, Ch.E. Düllmann, F. Fangli, W. Hartmann, M. Huang, E. Jäger, D. Kaji, J. Kanaya, Y. Kaneya, J. Khuyagbaatar, B. Kindler, J.V. Kratz, J. Krier, Y. Kudou, N. Kurz, B. Lommel, S. Miyashita, K. Morimoto, K. Morita, M. Murakami, Y. Nagame, H. Nitsche, K. Ooe, T.K. Sato, M. Schädel, J. Steiner, P. Steinegger, T. Sumita, M. Takeyama, K. Tanaka, A. Toyoshima, K. Tsukada, A. Türler, Y. Wakabayashi, N. Wiehl, S. Yamaki, Z. Qin, Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)\(_{6}\) and W(CO)\(_{6}\). Radiochim. Acta 92, 141–151 (2016)Google Scholar
  31. 31.
    K.E. Lewis, D.M. Golden, G.P. Smith, Organometallic bond dissociation energies: laser pyrolysis of Fe(CO)\(_{5}\), Cr(CO)\(_{6}\), Mo(CO)\(_{6}\), and W(CO)\(_{6}\). J. Am. Chem. Soc. 106, 3905–3912 (1984)CrossRefGoogle Scholar
  32. 32.
    I. Usoltsev, R. Eichler, A. Türler, Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process. Radiochim. Acta (2016). in pressGoogle Scholar
  33. 33.
    C.S. Nash, B.E. Bursten, Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)\(_{6}\). J. Am. Chem. Soc. 121, 10830–10831 (1999)CrossRefGoogle Scholar
  34. 34.
    B. Fricke, W. Greiner, On the chemistry of superheavy elements around Z = 164. Phys. Lett. B 30, 317 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    R.A. Penneman, J.B. Mann, C.K. Jorgensen, Speculations on the chemistry of superheavy elements such as Z = 164. Chem. Phys. Lett. 8, 321–326 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    P. Ball, The crucible. Chem. World 7(11) (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations