Skip to main content

Infrastructure Estimates for a Highly Renewable Global Electricity Grid

  • Chapter
  • First Online:
New Horizons in Fundamental Physics

Abstract

A global electricity grid may offer a number of advantages in a future highly renewable energy system dominated by wind and solar power. In this paper, we provide quantitative estimates for the benefits and costs of an intercontinental HVDC grid connecting a number of highly populated super regions in the Northern Hemisphere. The modeling is based on hourly time series of wind and solar power generation calculated from high-resolution global weather data using the Global Renewable Energy Atlas. Taking a European point of view, we find that the annual need for backup energy can be reduced from 18 to 10 % of the load by connecting to North Africa, the Middle East and Russia. A further reduction to 7 % is found for a grid spanning the whole Northern Hemisphere at the expense of substantial increase in transmission capacities. Comparing the economical benefits to the additional cost of intercontinental transmission lines, we estimate that connecting Europe to its geographically nearest neighbors may reduce the total cost of electricity. Longer distance connections to North America or Asia, on the other hand, would require transmission costs to fall to 15–20 % of current levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We emphasize again that the capacity here is chosen only to obtain the shape of the wind and solar time series. These time series are then rescaled as specified by \(\alpha _n\).

  2. 2.

    Federal Energy Regulatory Commission.

  3. 3.

    The discrepancy between this number and the 15 % found in [6], derives from the fact that this analysis is based on new data from the renewable energy atlas spanning 32 years, whereas [6] used an 8 year data set from [20].

References

  1. S. Chatzivasileiadis, D. Ernst, G. Andersson, The global grid. Renew. Energy 57, 372–383 (2013)

    Article  Google Scholar 

  2. G. Czisch, J. Schmid, Low cost but totally renewable electricity supply for a huge supply area—a European/Transeuropean example, 2006. Unpublished manuscript, Accessed 22 Dec 2015

    Google Scholar 

  3. M.Z. Jacobsen, M.A. Delucchi, A path to sustainable energy by 2030. Sci. Am. 301(5), 58–65 (2009)

    Article  ADS  Google Scholar 

  4. S. Saha, S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y. Chuang, H.-M.H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R.W. Reynolds, G. Rutledge, M. Goldberg, The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc. 91(8), 1015–1057 (2010)

    Article  Google Scholar 

  5. G.B. Andresen, A.A. Søndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis. Energy 93(1), 1074–1088 (2015)

    Article  Google Scholar 

  6. R.A. Rodriguez, S. Becker, G. Andresen, D. Heide, M. Greiner, Transmission needs across a fully renewable European power system. Renew. Energy 63, 467–476 (2014)

    Article  Google Scholar 

  7. S. Becker, R.A. Rodriguez, G.B. Andresen, S. Schramm, M. Greiner, Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014)

    Article  Google Scholar 

  8. M.G. Rasmussen, G.B. Andresen, M. Greiner, Storage and balancing synergies in a fully or highly renewable pan-European power system. Energy Policy 51, 642–651 (2012)

    Article  Google Scholar 

  9. R.A. Rodriguez, S. Becker, M. Greiner, Cost sensitivity in the design of a highly renewable European electricity system. Energy 83, 658–668 (2015)

    Article  Google Scholar 

  10. R.A. Rodriguez, M. Dahl, S. Becker, M. Greiner, Localized vs. synchronized exports across a highly renewable pan-European transmission network. Energy, Sustain. Soc. 5, 21 (2015)

    Google Scholar 

  11. S. Becker, B.A. Frew, G.B. Andresen, T. Zeyer, S. Schramm, M. Greiner, M.Z. Jacobsen, Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72, 443–458 (2014)

    Article  Google Scholar 

  12. S. Becker, B.A. Frew, G.B. Andresen, M.Z. Jacobson, S. Schramm, M. Greiner, Renewable build-up pathways for the US: generation costs are not system costs. Energy 81, 437–445 (2015)

    Article  Google Scholar 

  13. G. Pleßmann, M. Erdmann, M. Hlusiak, C. Breyer, Global energy storage demand for a 100% renewable electricity supply. Energy Proc. 46, 22–31 (2014)

    Article  Google Scholar 

  14. H.G. Beyer, G. Heilscher, S. Bofinger, A robust model for the MPP performance of different types of PV-modules applied for the performance check of grid connected systems, Eurosun, Freiburg (2004)

    Google Scholar 

  15. S.A Kalogirou, in Solar energy engineering: processes and systems. (Academic Press, 2009)

    Google Scholar 

  16. F. Trieb, Concentrating solar power for the Mediterranean region. Technical report, German Aerospace Center (DLR), Institute of Technical Thermodynamics, Section Systems Analysis and Technology Assesment (2005)

    Google Scholar 

  17. Center for International Earth Science Information Network CIESIN Columbia University and Centro Internacional de Agricultura Tropical CIAT. Gridded population of the world, version 3 (GPWv3): Population density grid, future estimates (2005)

    Google Scholar 

  18. M. Brower (for NREL under supervision of Corbus, D.), Development of Eastern regional wind resource and wind plant output datasets. Technical report, AWS Truewind, LLC, Albany, New York (2009)

    Google Scholar 

  19. C. Potter, B. Nijssen (for NREL under supervision of Lew, D), Development of regional wind resource and wind plant output datasets. Technical report, 3TIER (Seattle, Washington, 2009)

    Google Scholar 

  20. S. Bofinger, L. von Bremen, K. Knorr, K. Lesch, K. Rohrig, Y.M. Saint-Drenan, M. Speckmann, Raum-zeitliche Erzeugungsmuster von Wind- und Solarenergie in der UCTE-Region und deren Einfluss auf elektrische Transportnetze: Abschlussbericht für Siemens Zentraler Forschungsbereich ISET e.V., Kassel, Technical report, Institut fr Solare Energieversorgungstechnik (2008)

    Google Scholar 

  21. B.A. Corcoran, N. Jenkins, M.Z. Jacobson, Effects of aggregating electric load in the United States. Energy Policy 46, 399–416 (2012)

    Article  Google Scholar 

  22. IEA. Electricity Information 2010. OECD/IEA, 2010 edition (2010)

    Google Scholar 

  23. B. Wollenberg, A. Wood, Operation, and Control. (John Wiley & Sons, Power Generation, 1996)

    Google Scholar 

  24. I. Kaizuka, R. Kurihara, H. Matsukawa, G. Masson, S. Nowak, M. Bruniholz, S. Orlandi, Trends 2015 in photovoltaic applications, Technical report, International Energy Agency (2015)

    Google Scholar 

  25. J. Widen, Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE Trans. Sustain. Energy 2(2), 177–183 (2011)

    Article  Google Scholar 

  26. M. Dahl, Power-flow modeling in complex renewable electricity networks, Master’s thesis, Aarhus University, Feb 2015

    Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Sarah Becker for providing the data for the US region. GBA gratefully acknowledges financial support from DONG Energy and the Danish Advanced Technology Foundation (j.nr. 140-2012-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin “Walterson” Greiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dahl, M., Rodriguez, R.A., Søndergaard, A.A., Zeyer, T., Andresen, G.B., Greiner, M.“. (2017). Infrastructure Estimates for a Highly Renewable Global Electricity Grid. In: Schramm, S., Schäfer, M. (eds) New Horizons in Fundamental Physics. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44165-8_25

Download citation

Publish with us

Policies and ethics