Advertisement

The Case for an Underground Neutrino Facility in South Africa

  • Z. Z. VilakaziEmail author
  • S. M. Wyngaardt
  • R. T. Newman
  • R. Lindsay
  • A. Buffler
  • R. de Meijer
  • P. Maleka
  • J. Bezuidenhout
  • R. Nchodu
  • M. van Rooyen
  • Z. Ndlovu
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Experiments in physics, Astro-particle physics and cosmology that require careful shielding against cosmic rays include dark matter searches, studies of radioactive decays, and neutrino detection experiments. The need for such shielding has motivated the construction of laboratory caverns in mines and adjacent to tunnels under mountains. There are currently about a dozen such laboratories, in existence or under construction, all in the Northern Hemisphere. A motivation has been made for the establishment of a Southern Hemisphere facility. In this paper a feasibility study of measurements of radon in air (using electret ion chambers and alpha spectroscopy), background gamma ray measurements (inside/outside) the tunnel using scintillator (inorganic) detectors, cosmic ray measurements using organic scintillators and radiometric analyses of representative rock samples for the establishment of such a facility in the South Africa is presented.

Keywords

Underground laboratory Neutrinos Gamma ray Radon Dark matter Background 

Notes

Acknowledgments

This study has received support from the South African National Research Foundation (NRF). The generosity of the SAUL collaboration is very much appreciated.

Finally Herzlichste Glueckwuensche zum Geburtstag Prof Greiner and thank you for being a friend of South African Science.

References

  1. 1.
    R. Bernabei et al., Nucl. Instrum. Methods Phys. Res. A 592(3) (2008)Google Scholar
  2. 2.
    R. Bernabei et al., Eur. Phys. J. C 67(39) (2010). (and references therein)Google Scholar
  3. 3.
    D. Javorsek et al., Power spectrum analyses of nuclear decay rates. Astropart. Phys. 34, 173–178 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    E. Fischbach et al., Evidence for Solar Influences on Nuclear Decay Rates, in Proceedings of the Fifth Meeting on CPT and Lorentz Symmetry, ed. by A. Kostelecky (World Scientific, Singapore, 2011), pp. 168–172. e-Print: arXiv:1007.3318
  5. 5.
    F. Reines, M.F. Crouch, T.L. Jenkins, W.R. Kropp, H.S. Gurr, G.R. Smith, J.P.F. Sellschop, Evidence for high-energy cosmic ray neutrino interactions. Phys. Rev. Lett. 15, 429–433 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    B.S. Meyer, J.P.F. Sellschop, M.F. Crouch, W.R. Kropp, H.W. Sobel, H.S. Gurr, J. Lathrop, F. Reines, (UC, Irvine); Cosmic ray muon intensity deep underground versus depth. Phys. Rev. D 1, 2229–2244 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    F. Reines et al., Upper limit on high-energy neutrinos from Weber pulses. Phys. Rev. Lett. 26, 1451–1452 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    P. Kotrappa et al., Health Phys. 58(4), 461Google Scholar
  9. 9.
    F. Reines, W.R. Kropp, H.W. Sobel, H.S. Gurr, J. Lathrop, (UC, Irvine), M.F. Crouch, J.P.F. Sellschop, B.S. Meyer, Muons produced by atmospheric neutrinos. Exp. Phys. Rev. D 4, 80–98 (1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Z. Z. Vilakazi
    • 1
    Email author
  • S. M. Wyngaardt
    • 2
  • R. T. Newman
    • 2
  • R. Lindsay
    • 3
  • A. Buffler
    • 4
  • R. de Meijer
    • 3
  • P. Maleka
    • 5
  • J. Bezuidenhout
    • 6
  • R. Nchodu
    • 5
  • M. van Rooyen
    • 2
  • Z. Ndlovu
    • 2
  1. 1.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of PhysicsStellenbosch UniversityStellenboschSouth Africa
  3. 3.Department of PhysicsUniversity of the Western CapeBellvilleSouth Africa
  4. 4.Department of PhysicsUniversity of Cape TownRondeboschSouth Africa
  5. 5.iThemba LABSSomerset WestSouth Africa
  6. 6.Military AcademySaldanhaSouth Africa

Personalised recommendations