Skip to main content

Simulations of Accretion Disks Around Massive stars

  • Chapter
  • First Online:
New Horizons in Fundamental Physics

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 1143 Accesses

Abstract

We present a review of the pseudo-complex General Relativity, which is an algebraical extension of the standard theory. In the Einstein equations a new contribution arises, which is related to vacuum fluctuations building up near large masses. Though the theory is richer in structure, as it includes a minimal length, here we will neglect this minimal length and concentrate on the effects of the presence of dark energy. Stable circular orbits and the redshift are considered and compared to some observational data. Finally, accretion disks are simulated, using the model of Page and Thorne from 1974, with the metric adjusted to the new one. We want to convince that the model presented is a very effective manner to include quantum effects on the phenomenological level, i.e., it takes into account that mass not only curves the space but also changes the vacuum properties, not taken into account properly up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, GRAVITATION (W. H. Freeman and Company, San Francisco, 1973)

    Google Scholar 

  2. C.M. Will, Living Rev. Relativ. 9, 3 (2006)

    Article  ADS  Google Scholar 

  3. M.A. Abramowicz, W. Kluzniak, J.P. Lasota, Astron. Astrophys. 396, L31 (2002)

    Article  ADS  Google Scholar 

  4. P.F. Kelly, R.B. Mann, Class. Quantum Gravity 3, 705 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Peter, Hess und Walter Greiner, Int. J. Mod. Phys. E 18, 51 (2009)

    Google Scholar 

  6. G. Caspar, T. Schönenbach, P.O. Hess, M. Schäfer, W. Greiner, Int. J. Mod. Phys. E 21, 1250015 (2012)

    Article  ADS  Google Scholar 

  7. T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, MNRAS 430, 2999 (2013)

    Article  ADS  Google Scholar 

  8. T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, Mon. Not. R. Astron. Soc. 442, 121 (2014)

    Article  ADS  Google Scholar 

  9. M. Visser, Phys. Rev. D 54, 5116 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. T.M. Belloni, A. Sanna, M. Mendz, MNRAS 426, 1701 (2012)

    Article  ADS  Google Scholar 

  11. R.I. Hynes, D. Steeghs, J. Casares, P.A. Charles, K. O’Brian, ApJ 609, 317 (2004)

    Article  ADS  Google Scholar 

  12. R.C. Reis, A.C. Fabian, R.R. Ross, G. Miniutti, J.M. Miller, C. Reynolds, MNRAS 387, 1489 (2008)

    Article  ADS  Google Scholar 

  13. J. Steiner, J. McClintock, G. Jeffrey et al., 38th COSPAR Scientific Assembly, 18–15 July (Bremen, Germany, 2010)

    Google Scholar 

  14. D. Lai, W. Fu, D. Tsang, J. Horak, C. Ya, Proceedings of the International Astronomical Union 8S(290), 57 (2012)

    Article  Google Scholar 

  15. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)

    Google Scholar 

  16. F.H. Vincent, T. Paumard, E. Gourgoulhon, G. Perrin, Class. Quantum Gravity 28, 225011 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.O. Hess, M. Schäfer, W. Greiner, Pseudo-complex General Relativity in FIAS Interdisciplinary Science Series (Springer, Heidelberg, 2015). ISBN 978-3-319-25060-1, doi:10.1007/978-3-319-25061-8

Download references

Acknowledgments

Peter O. Hess acknowledges the financial support from DGAPA-PAPIIT (IN100315). Peter O. Hess also acknowledges financial support from the Frankfurt Institute for Advanced Studies (FIAS) and the fruitful working atmosphere at this institute which led to many new ideas and products. We also thank T. Boller (MPI, Garching) for the many discussions, contributions and providing to us Fig. 3. We thank G. Caspar, M. Schäfer and T. Schönenbach for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Hess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Algalán, M.B., Hess, P.O., Greiner, W. (2017). Simulations of Accretion Disks Around Massive stars. In: Schramm, S., Schäfer, M. (eds) New Horizons in Fundamental Physics. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44165-8_21

Download citation

Publish with us

Policies and ethics