Eighty Years of Research on Super-Heavy Nuclei

  • Sigurd HofmannEmail author
Part of the FIAS Interdisciplinary Science Series book series (FIAS)


Extending borders is a strategy of evolution. So it is not astonishing that researchers wanted to know about the existence and properties of nuclei and elements beyond the known uranium. A short history is presented from early searches for trans-uraniums up to the production and safe identification of shell-stabilized super-heavy nuclei. The path is not only governed by noble and unambiguous scientific research, but also accompanied by errors and other human mistakes. However, obviously, evolution found the correct destination eventually. What can we expect for the future? Research using heavy ions will continue, accelerators and detectors will be improved, and theory will profit from inventive concepts and faster computers. Efforts will reveal the change of shell strength as function of proton and neutron number, the location of the most stable nuclei and how long their lifetime will be, the optimum method of their production, and, possibly, the existence of nucleonic formations and shapes, which are objects of speculation presently.


Heavy Nucleus Decay Chain Spontaneous Fission Superheavy Nucleus Fission Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is my heartfelt wish to congratulate Walter Greiner on this special occasion of his 80th birthday which was celebrated in Makutsi in November 2015. Walter is one of the fathers of GSI founded in 1969. This farsighted initiative led to the discovery of the new elements from bohrium (Z \(=\) 107) to copernicium (112). Walter Greiner considered the study of super-heavy nuclei and elements as an opportunity to extend nuclear and atomic physics and chemistry far into the unknown resulting in new insights into the mysteries of nature. His ideas of ‘cold fusion valleys’ and fragmentation theory have driven successful experimental search for these super-heavy nuclei. I am particularly grateful for his continuous support especially in times of reduced resources and pessimistic assessments. With gratitude I remember the extensive discussions with him during taxi rides from Sheremetyevo airport to Dubna and back when we visited the program advisory committee at FLNR, which he led as chairman. Under the current circumstances my greatest wish for the future is that Walter Greiner may have a quick recovery from his illness. I am also deeply obliged to my colleagues at GSI and the former SHIP group and participating people from other laboratories or institutes, with whom I could spend a most exciting and challenging time doing experiments with heavy ions. The current article reproduces some text from an article published in J. Phys. G: Nucl. Part. Phys. 42, 114001 (2015). That article provides a wider comparison of experimental work on cold and hot fusion reactions based on targets of \(^{208}\)Pb, \(^{209}\)Bi and isotopes of actinides, respectively.


  1. 1.
    E. Fermi, Nature 133, 898 (1934)ADSCrossRefGoogle Scholar
  2. 2.
    O. Hahn, L. Meitner, F. Strassmann, Naturwissenschaften 23, 544 (1935)Google Scholar
  3. 3.
    O. Hahn, F. Straßmann, Naturwissenschaften 27, 11 (1939)ADSCrossRefGoogle Scholar
  4. 4.
    L. Meitner, O.R. Frisch, Nature 143, 239 (1939)ADSCrossRefGoogle Scholar
  5. 5.
    G.N. Flerov, K.A. Petrjak, Phys. Rev. 58, 89 (1940)ADSCrossRefGoogle Scholar
  6. 6.
    G. Fea, Nuovo Cimento 12, 368 (1935)CrossRefGoogle Scholar
  7. 7.
    J. Magill, G. Pfenning, R. Dreher, Z. Sóti, Nucleonica GmbH, 76344 Eggenstein-Leopoldshafen, Germany (2015)Google Scholar
  8. 8.
    J.A. Wheeler, Niels Bohr and the Development of Physics (Pergamon Press, London, 1955)Google Scholar
  9. 9.
    J.A. Wheeler, in Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations, New York, 1955)Google Scholar
  10. 10.
    R. Smolanczuk, J. Skalski, A. Sobiczewski, Phys. Rev. C 52, 1871 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    R. Smolanczuk, A. Sobiczewski, in Proceedings of XV Nuclear Physics Divisional Conference on Low Energy Nuclear Dynamics, St.Petersburg, Russia, 1995, ed. by Yu.Ts. Oganessian, R. Kalpakchieva, W. von Oertzen (World Scientific, Singapore, 1995)Google Scholar
  12. 12.
    P. Möller, J.R. Nix, K.L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    G. Soff, J. Rafelski, W. Greiner, Phys. Rev. A 7, 903 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    J. Reinhardt, B. Müller, W. Greiner, Phys. Rev. A 24, 103 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    C. Kozhuharov, P. Kienle, E. Berdermann, H. Bokemeyer, J.S. Greenberg, Y. Nakayama, P. Vincent, H. Backe, L. Handschug, E. Kankeleit, Phys. Rev. Lett. 42, 376 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    M. Göppert-Mayer, Phys. Rev. 74, 235 (1948)ADSCrossRefGoogle Scholar
  17. 17.
    O. Haxel, J.H.D. Jensen, H.E. Suess, Die Naturwissenschaften 36, 376 (1949)CrossRefGoogle Scholar
  18. 18.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    W.D. Myers, W.J. Świa̧tecki, Nucl. Phys. 81, 1 (1966)Google Scholar
  20. 20.
    A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    H. Meldner, Ark. Fys. 36, 593 (1967)Google Scholar
  22. 22.
    S.G. Nilsson, J.R. Nix, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, P. Möller, Nucl. Phys. A 115, 545 (1968)ADSCrossRefGoogle Scholar
  23. 23.
    S.G. Nilsson, S.G. Thompson, C.F. Tsang, Phys. Lett. B 28, 458 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.L. Lamm, P. Möller, B. Nilsson, Nucl. Phys. A 131, 1 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    U. Mosel, W. Greiner, Z. Phys. 222, 261 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    J. Grumann, U. Mosel, B. Fink, W. Greiner, Z. Phys. 228, 371 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    E.O. Fiset, J.R. Nix, Nucl. Phys. A 193, 647 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    A. Sobiczewski, Phys. Scr. A 10, 47 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    J. Randrup, S.E. Larsson, P. Möller, S.G. Nilsson, K. Pomorski, A. Sobiczewski, Phys. Rev. C 13, 229 (1976)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Polikanov, V.A. Druin, V.A. Karnaukov, V.L. Mikheev, A.A. Pleve, N.K. Skobolev, V.G. Subotin, G.M. Ter-Akopian, V.A. Fomichev, Sov. Phys. JETP 15, 1016 (1962)Google Scholar
  31. 31.
    Yu. Ts. Oganessian, A.G. Demin, A.S. Iljinov, S.P. Tretyakova, A.A. Pleve, Yu.E. Penionzhkevich, M.P. Ivanov, Yu.P. Tretyakov, Nucl. Phys. A 239, 157 (1975)Google Scholar
  32. 32.
    S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, H.G. Burkhard, L. Dahl, K. Eberhardt et al., Eur. Phys. J. A 52, 180 (2016)Google Scholar
  33. 33.
    Yu. Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, et al., Phys. Rev. Lett. 83, 3154 (1999)Google Scholar
  34. 34.
    W. Grimm, G. Herrmann, H.-D. Schüssler, Phys. Rev. Lett. 26, 1040 (1971)ADSCrossRefGoogle Scholar
  35. 35.
    R.V. Gentry, T.A. Cahill, N.R. Fletcher, H.C. Kaufmann, X.R. Medsker, J.W. Nelson, R.G. Flocchini, Phys. Rev. Lett. 37, 11 (1976)ADSCrossRefGoogle Scholar
  36. 36.
    G.N. Flerov, G.M. Ter-Akopian, Rep. Prog. Phys. 46, 817 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    G.M. Ter-Akopian, S.N. Dmitriev, Nucl. Phys. A 944, 177 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    S. Ćwiok, J. Dobaczewski, P.H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 56, 238 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    A.T. Kruppa, A.T. Kruppa, M. Bender, W. Nazarewicz, P.G. Reinhard, T. Vertse, S. Ćwiok, Phys. Rev. C 61, 034313 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    M. Bender, W. Nazarewicz, P.G. Reinhard, Phys. Lett. B 515, 42 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    M. Bender, P. Bonche, T. Duguet, P.H. Heenen, Nucl. Phys. A 723, 354 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    S. Schramm, Phys. Rev. C 66, 064310 (2002) and private communication (2014)Google Scholar
  44. 44.
    D.C. Hoffman, Nucl. Phys. A 502, 21c (1989)Google Scholar
  45. 45.
    G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    G. Münzenberg, In-Flight Separation of Heavy Ion Beams in Experimental Techniques in Nuclear Physics, ed. by D.N. Poenaru, W. Greiner (Walter de Gruyter, Berlin, New York, 1997)Google Scholar
  48. 48.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    K.E. Gregorich, Nucl. Instr. Methods Phys. Res. Sect. A 711, 47 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Yu. Ts. Oganessian, V.K. Utyonkov. Rep. Prog. Phys. 78, 036301 (2015)Google Scholar
  51. 51.
    K. Morita, Nucl. Phys. A 944, 30 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Yu. Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, R.N. Sagaidak, I.V. Shirokovsky, Yu.S. Tsyganov, A.A. Voinov, A.N. Mezentsev et al., Phys. Rev. C 79, 024603 (2009)Google Scholar
  53. 53.
    S. Hofmann, D. Ackermann, S. Antalic, V.F. Comas, S. Heinz, J.A. Heredia, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, I. Kojouharov et al., GSI scientific report 2008. GSI Rep. 2009–1, 131 (2009)Google Scholar
  54. 54.
    J. Khuyagbaatar, A. Yakushev, Ch.E. Düllmann, H. Nitsche, J. Roberto, D. Ackermann, L.-L. Andersson, M. Asai, H. Brand, M. Block et al., GSI scientific report 2012. GSI Rep. 2013–1, 131 (2013)Google Scholar
  55. 55.
    S. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H.G. Burkhard et al., Eur. Phys. J. A 48, 62 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    I. Muntian, S. Hofmann, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B, 34, 2073 (2003) and A. Sobiczewski, private communication (2014)Google Scholar
  57. 57.
    I. Muntian, Z. Patyk, A. Sobiczewski, Phys. At. Nucl. 66, 1015 (2003)CrossRefGoogle Scholar
  58. 58.
    Yu. Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal et al., Phys. Rev. C 69, 054607 (2004)Google Scholar
  59. 59.
    P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, M. Mumpower, Phys. Rev. C 91, 024310 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, L. Dahl, K. Eberhardt, R. Grzywacz et al., Eur. Phys. J. A 52, 116 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    J.H. Hamilton, S. Hofmann, Y.T. Oganessian, Annu. Rev. Nucl. Part. Sci. 63, 383 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    V.K. Utyonkov, in International Symposium ‘Super Heavy Nuclei’, College Station, Texas, USA, 2015.
  63. 63.
    K. Morita, et al., RIKEN Accelerator Progress Report 2015, to be publishedGoogle Scholar
  64. 64.
    K. Morita, in International Symposium ‘Super Heavy Nuclei’, College Station, Texas, USA. 2015.
  65. 65.
    V.I. Zagrebaev, A.V. Karpov, W. Greiner, Phys. Rev. C 85, 014608 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    V.I. Zagrebaev, Yu. Ts. Oganessian, M.G. Itkis, W. Greiner, Phys. Rev. C 73, 31602(R) (2006)Google Scholar
  67. 67.
    S. Heinz, V. Comas, F.P. Heßberger, S. Hofmann, D. Ackermann, H.G. Burkhard, Z. Gan, J. Heredia, J. Khuyagbaatar, B. Kindler et al., Eur. Phys. J. A 38, 227 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    W.J. Świa̧tecki, K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C 71, 014602 (2005)Google Scholar
  69. 69.
    D. Rudolph, U. Forsberg, P. Golubev, L.G. Sarmiento, A. Yakushev, L.L. Andersson, A. Di Nitto, Ch.E. Duüllmann, J.M. Gates, K.E. Gregorich et al., Phys. Rev. Lett. 111, 112502 (2013)Google Scholar
  70. 70.
    C.E. Bemis Jr., R.J. Silva, D.C. Hensley, O.L. Keller Jr., J.R. Tarrant, L.D. Hunt, P.F. Dittner, R.L. Hahn, C.D. Goodman, Phys. Rev. Lett. 31, 647 (1973)ADSCrossRefGoogle Scholar
  71. 71.
    W. Faust, P. Armbruster, S. Hofmann, G. Münzenberg, H. Ewald, K. Güttner, J. Radioanal. Nucl. Chem. 55, 175 (1980)CrossRefGoogle Scholar
  72. 72.
    S. Heinz, W. Barth, B. Franczak, H. Geissel, M. Gupta, S. Hofmann, S. Mickat, G. Münzenberg, W.R. Plaß, C. Scheidenberger, H. Weick, M. Winkler, Nucl. Instr. Methods Phys. Res. B 317, 354 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    M. Block, D. Ackermann, K. Blaum, C. Droese, M. Dworschak, S. Eliseev, T. Fleckenstein, E. Haettner, F. Herfurth, F.P. Heßberger, Nature 463, 785 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    C.Y. Wong, Ann. Phys. 77, 279 (1973)ADSCrossRefGoogle Scholar
  75. 75.
    K. Dietrich, K. Pomorski, Phys. Rev. Lett. 80, 37 (1998)ADSCrossRefGoogle Scholar
  76. 76.
    W. Greiner, Int. J. Mod. Phys. E 17, 2379 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    G. Münzenberg, H. Geissel, M. Gupta, S. Heinz, S. Hofmann, D. Malligenahalli, R.W. Plass, C. Scheidenberger, M. Winkler, J.S. Winfield, contribution to this conferenceGoogle Scholar
  78. 78.
    S. Hofmann, SHIP-2000—A proposal for the study of superheavy elements. GSI Rep. 99-02 (1999)Google Scholar
  79. 79.
    S. Hofmann, D. Ackermann, W. Barth, L. Dahl, F.P. Heßberger, B. Kindler, B. Lommel, R. Mann, G. Münzenberg, K. Tinschert, U. Ratzinger, A. Schempp, in International Symposium on Exotic Nuclei, EXON-2004 (World Scientific Publishing, Singapore, 2005)Google Scholar
  80. 80.
    W. Barth, in International Symposium ‘Super Heavy Nuclei’, College Station, Texas, USA, 2015.$_2015_TAMU.pdf

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  2. 2.Institut für PhysikGoethe-Universität FrankfurtFrankfurtGermany

Personalised recommendations