Skip to main content

Laser Assisted Breit-Wheeler and Schwinger Processes

  • Chapter
  • First Online:
New Horizons in Fundamental Physics

Abstract

The assistance of an intense optical laser pulse on electron-positron pair production by the Breit-Wheeler and Schwinger processes in XFEL fields is analyzed. The impact of a laser beam on high-energy photon collisions with XFEL photons consists in a phase space redistribution of the pairs emerging in the Breit-Wheeler sub-process. We provide numerical examples of the differential cross section for parameters related to the European XFEL. Analogously, the Schwinger type pair production in pulsed fields with oscillating components referring to a superposition of optical laser and XFEL frequencies is evaluated. The residual phase space distribution of created pairs is sensitive to the pulse shape and may differ significantly from transiently achieved mode occupations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(p_\parallel \) is parallel to the laser plane and \(p_\perp \) perpendicular to it.

References

  1. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  2. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Gelis, N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016)

    Google Scholar 

  4. J. Rafelski, B. Müller, W. Greiner, Z. Phys. A 285, 49 (1978)

    Article  ADS  Google Scholar 

  5. J. Rafelski, L.P. Fulcher, W. Greiner, Phys. Rev. Lett. 27, 958 (1971)

    Article  ADS  Google Scholar 

  6. B. Müller, H. Peitz, J. Rafelski, W. Greiner, Phys. Rev. Lett. 28, 1235 (1972)

    Article  ADS  Google Scholar 

  7. B. Müller, J. Rafelski, W. Greiner, Phys. Lett. B 47, 5 (1973)

    Article  ADS  Google Scholar 

  8. F. Fillion-Gourdeau, E. Lorin, A.D. Bandrauk, J. Phys. B 46, 175002 (2013)

    Article  ADS  Google Scholar 

  9. E. Brezin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Article  ADS  Google Scholar 

  10. N.B. Narozhny, S.S. Bulanov, V.D. Mur, V.S. Popov, Phys. Lett. A 330, 1 (2004)

    Article  ADS  Google Scholar 

  11. R. Schützhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. G.V. Dunne, C. Schubert, Phys. Rev. D 72, 105004 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 102, 080402 (2009)

    Article  ADS  Google Scholar 

  14. S. Augustin, C. Müller, J. Phys. Conf. Ser. 497, 012020 (2014)

    Article  ADS  Google Scholar 

  15. A. Di Piazza, E. Lötstedt, A.I. Milstein, C.H. Keitel, Phys. Rev. A 81, 062122 (2010)

    Article  ADS  Google Scholar 

  16. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  17. T. Nousch, D. Seipt, B. Kämpfer, A.I. Titov, Phys. Lett. B 755, 162 (2016)

    Google Scholar 

  18. A. Otto, T. Nousch, D. Seipt, B. Kämpfer, D. Blaschke, A.D. Panferov, S.A. Smolyansky, A.I. Titov, J. Plasma Phys. 82, 655820301 (2016)

    Google Scholar 

  19. A. Otto, D. Seipt, D. Blaschke, B. Kämpfer, S.A. Smolyansky, Phys. Lett. B 740, 335 (2015)

    Article  ADS  Google Scholar 

  20. A. Otto, D. Seipt, D.B. Blaschke, S.A. Smolyansky, B. Kämpfer, Phys. Rev. D 91, 105018 (2015)

    Article  ADS  Google Scholar 

  21. A.D. Panferov, S.A. Smolyansky, A. Otto, B. Kämpfer, D.B. Blaschke, L. Juchnowski, Eur. Phys. J. D 70, 1 (2016)

    Article  Google Scholar 

  22. D. Seipt, A. Surzhykov, S. Fritzsche, B. Kämpfer, New J. Phys. 18, 023044 (2016)

    Google Scholar 

  23. T. Nousch, D. Seipt, B. Kämpfer, A.I. Titov, Phys. Lett. B 715, 246 (2012)

    Article  ADS  Google Scholar 

  24. A.I. Titov, H. Takabe, B. Kämpfer, A. Hosaka, Phys. Rev. Lett. 108, 240406 (2012)

    Article  ADS  Google Scholar 

  25. A.I. Titov, B. Kämpfer, H. Takabe, A. Hosaka, Phys. Rev. A 87, 042106 (2013)

    Article  ADS  Google Scholar 

  26. A. Ringwald, Phys. Lett. B 510, 107 (2001)

    Article  ADS  Google Scholar 

  27. S.M. Schmidt, D.B. Blaschke, G. Röpke, S.A. Smolyansky, A.V. Prozorkevich, V.D. Toneev, Int. J. Mod. Phys. E 7, 709 (1998)

    Article  ADS  Google Scholar 

  28. R. Dabrowski, G.V. Dunne, Phys. Rev. D 90, 025021 (2014)

    Article  ADS  Google Scholar 

  29. ELI. European Extreme Light Infrastructure (2015). http://www.eli-laser.eu

  30. ELI-NP. ELI Nuclear Physics (2015). http://www.eli-np.ro

  31. HiPER. High Power laser for Energy Research project (2015). http://www.hiper-laser.org

  32. A. Ilderton, G. Torgrimsson, J. Wårdh, Phys. Rev. D 92, 065001 (2015)

    Article  ADS  Google Scholar 

  33. HIBEF. Helmholtz International Beamline for Extreme Fields (2015). http://www.hzdr.de/hgfbeamline

Download references

Acknowledgments

R. Sauerbrey, T. E. Cowan and H. Takabe are gratefully acknowledged for the collaboration within the HIBEF project [33]. We thank S. Fritzsche and A. Surzhykov for the common work on the caustic interpretation of elementary QED processes in bi-frequent fields. D.B. and S.A.S have been supported by Narodowe Centrum Nauki under grant number UMO-2014/15/B/ST2/03752.

We dedicate this article to Walter Greiner on the occasion of his 80th birthday. Walter Greiner promoted essentially the in-depth exploration of the nature of the quantum vacuum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kämpfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nousch, T. et al. (2017). Laser Assisted Breit-Wheeler and Schwinger Processes. In: Schramm, S., Schäfer, M. (eds) New Horizons in Fundamental Physics. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44165-8_18

Download citation

Publish with us

Policies and ethics