Skip to main content

Novel Developments of HYDJET++ Model for Ultra-relativistic Heavy-Ion Collisions

  • Chapter
  • First Online:
New Horizons in Fundamental Physics

Abstract

The HYDrodynamics with JETs (HYDJET++) model is applied for the description of ultra-relativistic heavy-ion collisions, particularly, the azimuthal anisotropy phenomena. The interplay of soft hydro-like processes and jets is able to describe the violation of the mass hierarchy of meson and baryon elliptic and triangular flows at \(p_\mathrm{T} \ge 2\) GeV/c, the fall-off of the anisotropic flow harmonics at intermediate transverse momenta, and the worsening of the number-of-constituent-quark (NCQ) scaling of elliptic/triangular flow at LHC compared to RHIC energies. The cross-talk of \(v_2\) and \(v_3\) leads to emergence of higher order harmonics in the model and to appearance of ridge structure in dihadron angular correlations in a broad pseudorapidity range. Recently, the model was further extended to describe quantitatively the event-by-event fluctuations of the anisotropic flow. The model calculations agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.V. Shuryak, The QCD Vacuum, Hadrons and Superdense Matter, 2nd edn. (World Scientific, Singapore, 2004), pp. 406–408

    Book  Google Scholar 

  2. D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z. Phys. C 51, 2210 (1991)

    Google Scholar 

  3. F. Becattini, Z. Phys. C 69, 485 (1996)

    Google Scholar 

  4. G. Torrieri et al., Comput. Phys. Commun. 167, 229 (2005)

    Article  ADS  Google Scholar 

  5. A. Kisiel, T. Taluc, W. Broniowski, W. Florkowski, Comput. Phys. Commun. 174, 669 (2006)

    Article  ADS  Google Scholar 

  6. U. Katscher et al., Z. Phys. A 346, 209 (1993)

    Article  ADS  Google Scholar 

  7. J. Brachmann et al., Phys. Rev. C 61, 024909 (2000)

    Article  ADS  Google Scholar 

  8. H. Song, S.A. Bass, U. Heinz, Phys. Rev. C 83, 024912 (2011)

    Article  ADS  Google Scholar 

  9. B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010)

    Article  ADS  Google Scholar 

  10. B. Andersen, G. Gustafson, B. Nielsson-Almqvist, Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  11. A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van, Phys. Rep. 236, 225 (1994)

    Google Scholar 

  12. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Google Scholar 

  13. H.J. Drescher et al., Phys. Rep. 350, 93 (2001)

    Article  ADS  Google Scholar 

  14. N.S. Amelin, L.V. Bravina, Sov. J. Nucl. Phys. 51, 133 (1990)

    Google Scholar 

  15. W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)

    Article  ADS  Google Scholar 

  16. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011)

    Article  ADS  Google Scholar 

  17. I.P. Lokhtin et al., Comput. Phys. Commun. 180, 779 (2009)

    Article  ADS  Google Scholar 

  18. W. Scheid, H. Muller, W. Greiner, Phys. Rev. Lett. 32, 741 (1974)

    Article  ADS  Google Scholar 

  19. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  20. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)

    Google Scholar 

  21. N.S. Amelin et al., Phys. Rev. C 74, 064901 (2006); N.S. Amelin et al., Phys. Rev. C 77, 014903 (2008)

    Google Scholar 

  22. I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46, 211 (2006)

    Article  ADS  Google Scholar 

  23. L.V. Bravina et al., Eur. Phys. J. C 74, 2807 (2014); L.V. Bravina et al., Phys. Rev. C 89, 024909 (2014)

    Google Scholar 

  24. G. Eyyubova et al., Phys. Rev. C 80, 064907 (2009)

    Article  ADS  Google Scholar 

  25. E. Zabrodin et al., J. Phys. G. 37, 094060 (2010)

    Article  ADS  Google Scholar 

  26. E.E. Zabrodin et al., J. Phys. Conf. Ser. 668, 012099 (2016)

    Article  ADS  Google Scholar 

  27. S. Chatrchyan et al., CMS collaboration, Phys. Rev. C 87, 014902 (2013)

    Google Scholar 

  28. J. Adams et al., STAR collaboration, Phys. Rev. Lett. 92, 052302 (2004)

    Google Scholar 

  29. S.S. Adler et al., PHENIX collaboration, Phys. Rev. Lett. 91, 182301 (2003)

    Google Scholar 

  30. F. Noferini et al., ALICE collaboration, Nucl. Phys. A 904–905, 438c (2013)

    Google Scholar 

  31. L. Adamczyk et al., STAR collaboration, Phys. Rev. C 88, 014902 (2013)

    Google Scholar 

  32. A. Adare et al., PHENIX collaboration, Phys. Rev. C 78, 014901 (2008)

    Google Scholar 

  33. M.M. Aggarwal et al., STAR collaboration, Phys. Rev. C 82, 024912 (2010)

    Google Scholar 

  34. K. Aamodt et al., ALICE collaboration, Phys. Rev. Lett. 107, 032301 (2011)

    Google Scholar 

  35. Proceedings of Quark Matter 2008, ed. by J. Alam, S. Chattopadhyay, T. Nayak, B. Sinha, Y.P. Viyogi, J. Phys. G 35, 104001–104167 (2008)

    Google Scholar 

  36. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) [Erratum-ibid. C 82, 039903 (2010)]

    Google Scholar 

  37. G. Eyyubova et al., Phys. Rev. C 91, 064907 (2015)

    Article  ADS  Google Scholar 

  38. G. Aad et al., ATLAS collaboration, JHEP 11, 183 (2013)

    Google Scholar 

  39. L.V. Bravina et al., Eur. Phys. J. C 75, 588 (2015)

    Article  ADS  Google Scholar 

  40. T. Adye, arXiv:1105.1160 [physics.data-an]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bravina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bravina, L. et al. (2017). Novel Developments of HYDJET++ Model for Ultra-relativistic Heavy-Ion Collisions. In: Schramm, S., Schäfer, M. (eds) New Horizons in Fundamental Physics. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44165-8_15

Download citation

Publish with us

Policies and ethics