Advertisement

Novel Developments of HYDJET++ Model for Ultra-relativistic Heavy-Ion Collisions

  • L. BravinaEmail author
  • B. H. Brusheim Johansson
  • J. Crkovská
  • G. Eyyubova
  • V. Korotkikh
  • I. Lokhtin
  • L. Malinina
  • E. Nazarova
  • S. Petrushanko
  • A. Snigirev
  • E. Zabrodin
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The HYDrodynamics with JETs (HYDJET++) model is applied for the description of ultra-relativistic heavy-ion collisions, particularly, the azimuthal anisotropy phenomena. The interplay of soft hydro-like processes and jets is able to describe the violation of the mass hierarchy of meson and baryon elliptic and triangular flows at \(p_\mathrm{T} \ge 2\) GeV/c, the fall-off of the anisotropic flow harmonics at intermediate transverse momenta, and the worsening of the number-of-constituent-quark (NCQ) scaling of elliptic/triangular flow at LHC compared to RHIC energies. The cross-talk of \(v_2\) and \(v_3\) leads to emergence of higher order harmonics in the model and to appearance of ridge structure in dihadron angular correlations in a broad pseudorapidity range. Recently, the model was further extended to describe quantitatively the event-by-event fluctuations of the anisotropic flow. The model calculations agree well with the experimental data.

Keywords

Hard Process Final State Interaction Flow Fluctuation Elliptic Flow Anisotropic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.V. Shuryak, The QCD Vacuum, Hadrons and Superdense Matter, 2nd edn. (World Scientific, Singapore, 2004), pp. 406–408CrossRefGoogle Scholar
  2. 2.
    D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z. Phys. C 51, 2210 (1991)Google Scholar
  3. 3.
    F. Becattini, Z. Phys. C 69, 485 (1996)Google Scholar
  4. 4.
    G. Torrieri et al., Comput. Phys. Commun. 167, 229 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A. Kisiel, T. Taluc, W. Broniowski, W. Florkowski, Comput. Phys. Commun. 174, 669 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    U. Katscher et al., Z. Phys. A 346, 209 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    J. Brachmann et al., Phys. Rev. C 61, 024909 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    H. Song, S.A. Bass, U. Heinz, Phys. Rev. C 83, 024912 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 82, 014903 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    B. Andersen, G. Gustafson, B. Nielsson-Almqvist, Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van, Phys. Rep. 236, 225 (1994)Google Scholar
  12. 12.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); M. Bleicher et al., J. Phys. G 25, 1859 (1999)Google Scholar
  13. 13.
    H.J. Drescher et al., Phys. Rep. 350, 93 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    N.S. Amelin, L.V. Bravina, Sov. J. Nucl. Phys. 51, 133 (1990)Google Scholar
  15. 15.
    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Ostapchenko, Phys. Rev. D 83, 014018 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    I.P. Lokhtin et al., Comput. Phys. Commun. 180, 779 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W. Scheid, H. Muller, W. Greiner, Phys. Rev. Lett. 32, 741 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)Google Scholar
  21. 21.
    N.S. Amelin et al., Phys. Rev. C 74, 064901 (2006); N.S. Amelin et al., Phys. Rev. C 77, 014903 (2008)Google Scholar
  22. 22.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 46, 211 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    L.V. Bravina et al., Eur. Phys. J. C 74, 2807 (2014); L.V. Bravina et al., Phys. Rev. C 89, 024909 (2014)Google Scholar
  24. 24.
    G. Eyyubova et al., Phys. Rev. C 80, 064907 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    E. Zabrodin et al., J. Phys. G. 37, 094060 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    E.E. Zabrodin et al., J. Phys. Conf. Ser. 668, 012099 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Chatrchyan et al., CMS collaboration, Phys. Rev. C 87, 014902 (2013)Google Scholar
  28. 28.
    J. Adams et al., STAR collaboration, Phys. Rev. Lett. 92, 052302 (2004)Google Scholar
  29. 29.
    S.S. Adler et al., PHENIX collaboration, Phys. Rev. Lett. 91, 182301 (2003)Google Scholar
  30. 30.
    F. Noferini et al., ALICE collaboration, Nucl. Phys. A 904–905, 438c (2013)Google Scholar
  31. 31.
    L. Adamczyk et al., STAR collaboration, Phys. Rev. C 88, 014902 (2013)Google Scholar
  32. 32.
    A. Adare et al., PHENIX collaboration, Phys. Rev. C 78, 014901 (2008)Google Scholar
  33. 33.
    M.M. Aggarwal et al., STAR collaboration, Phys. Rev. C 82, 024912 (2010)Google Scholar
  34. 34.
    K. Aamodt et al., ALICE collaboration, Phys. Rev. Lett. 107, 032301 (2011)Google Scholar
  35. 35.
    Proceedings of Quark Matter 2008, ed. by J. Alam, S. Chattopadhyay, T. Nayak, B. Sinha, Y.P. Viyogi, J. Phys. G 35, 104001–104167 (2008)Google Scholar
  36. 36.
    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) [Erratum-ibid. C 82, 039903 (2010)]Google Scholar
  37. 37.
    G. Eyyubova et al., Phys. Rev. C 91, 064907 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    G. Aad et al., ATLAS collaboration, JHEP 11, 183 (2013)Google Scholar
  39. 39.
    L.V. Bravina et al., Eur. Phys. J. C 75, 588 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    T. Adye, arXiv:1105.1160 [physics.data-an]

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • L. Bravina
    • 1
    • 2
    • 3
    Email author
  • B. H. Brusheim Johansson
    • 1
  • J. Crkovská
    • 4
  • G. Eyyubova
    • 5
  • V. Korotkikh
    • 5
  • I. Lokhtin
    • 5
  • L. Malinina
    • 5
  • E. Nazarova
    • 5
  • S. Petrushanko
    • 5
  • A. Snigirev
    • 5
  • E. Zabrodin
    • 2
    • 3
    • 5
    • 6
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  3. 3.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Institut de Physique Nucléaire, CNRS-IN2P3Univ. Paris-Sud, Université Paris-SaclaySaint-AubinFrance
  5. 5.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  6. 6.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations