Advertisement

Degrees of Freedom of the Quark Gluon Plasma, Tested by Heavy Mesons

  • H. Berrehrah
  • M. Nahrgang
  • T. Song
  • V. Ozvenchuck
  • P. B. Gossiaux
  • K. Werner
  • E. Bratkovskaya
  • J. AichelinEmail author
Chapter
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assumption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamics.

Keywords

Drag Force Heavy Quark Quark Gluon Plasma Light Quark Entropy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by BMBF, by the LOEWE center HIC for FAIR and by the project “Together” of the region Pays de la Loire, France.

References

  1. 1.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bazavov et al., Hot QCD Collaboration, Phys. Rev. D 90(9), 094503 (2014)Google Scholar
  3. 3.
    M. Cacciari, M. Greco, P. Nason, JHEP 9805, 007 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    M. Cacciari, S. Frixione, P. Nason, JHEP 0103, 006 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason, G. Ridolfi, JHEP 1210, 137 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    STAR Collaboration, Phys. Rev. Lett. 98, 192301 (2007); Erratum-ibid. 106, 159902 (2011)Google Scholar
  7. 7.
    X. Dong, STAR Collaboration. Nucl. Phys. A904–905, 19c (2013)Google Scholar
  8. 8.
    PHENIX Collaboration, Phys. Rev. C 84, 044905 (2011)Google Scholar
  9. 9.
    ALICE Collaboration, JHEP 09, 112 (2012)Google Scholar
  10. 10.
    A. Dainese, ALICE Collaboration. arXiv:1212.0995 [nucl-ex]
  11. 11.
    B. Abelev et al., ALICE Collaboration. arXiv:1305.2707 [nucl-ex]
  12. 12.
    CMS Collaboration [CMS Collaboration], CMS-PAS-HIN-15-005Google Scholar
  13. 13.
    L. Adamczyk et al., STAR Collaboration. arXiv:1405.6348 [hep-ex]
  14. 14.
    J. Adam et al., ALICE Collaboration. Phys. Lett. B 753, 41 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Bjorken, Fermilab preprint Pub-82/59-THY (1982)Google Scholar
  16. 16.
    A. Peshier, Phys. Rev. Lett. 97, 212301 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    P.B. Gossiaux, J. Aichelin, Phys. Rev. C 78, 014904 (2008). arXiv:0802.2525 [hep-ph]
  18. 18.
    S. Peigne, A. Peshier, Phys. Rev. D 77, 114017 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    M. Gyulassy, X.N. Wang, Nucl. Phys. B 420, 583 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    X.N. Wang, M. Gyulassy, M. Plümer, Phys. Rev. D 51, 3436 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    R. Baier, Y.L. Dokshitzer, S. Peigné, D. Schiff, Phys. Lett. B 345, 277 (1995)Google Scholar
  22. 22.
    R. Baier, Y.L. Dokshitzer, A.H. Müller, S. Peigné, D. Schiff, Nucl. Phys. B 483, 91 (1997); Nucl. Phys. B 484, 265 (1997)Google Scholar
  23. 23.
    B.G. Zakharov, JETP Lett. 63, 952 (1996); JETP Lett. 64, 781 (1996); JETP Lett. 65, 615 (1997); JETP Lett. 73, 49 (2001); JETP Lett. 78, 759 (2003); JETP Lett. 80, 617 (2004)Google Scholar
  24. 24.
    M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. Lett. 85, 5535 (2000); Nucl. Phys. B 571, 197 (2000); Nucl. Phys. B 594, 371 (2001)Google Scholar
  25. 25.
    Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 0011, 001 (2000); JHEP 0305, 051 (2003)Google Scholar
  27. 27.
    N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 69, 114003 (2004); Phys. Rev. C 72, 064910 (2005)Google Scholar
  28. 28.
    B.W. Zhang, E.Wang, X.N. Wang, Phys. Rev. Lett. 93, 072301 (2004). [nucl-th/0309040]Google Scholar
  29. 29.
    M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004). [nucl-th/0310076]Google Scholar
  30. 30.
    M. Djordjevic, M. Gyulassy, S. Wicks, Phys. Rev. Lett. 94, 112301 (2005). [hep-ph/0410372]ADSCrossRefGoogle Scholar
  31. 31.
    M. Djordjevic, U. Heinz, Phys. Rev. C 77, 024905 (2008). arXiv:0705.3439 [nucl-th]
  32. 32.
    M. Djordjevic, Phys. Rev. C 80, 064909 (2009). arXiv:0903.4591 [nucl-th]
  33. 33.
    T. Renk, Phys. Rev. C 85, 044903 (2012). arXiv:1112.2503 [hep-ph]
  34. 34.
    J. Aichelin, P.B. Gossiaux, T. Gousset, Phys. Rev. D 89, 7 (2014), 074018. arXiv:1307.5270 [hep-ph]
  35. 35.
    A. Peshier, hep-ph/0601119Google Scholar
  36. 36.
    J.F. Gunion, G. Bertsch, Phys. Rev. D 25, 746 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    P.B. Gossiaux, Nucl. Phys. A 910–911, 301 (2013). arXiv:1209.0844 [hep-ph]
  38. 38.
    M. Nahrgang, J. Aichelin, S. Bass, P.B. Gossiaux, K. Werner, Phys. Rev. C 91(1), 014904 (2015). doi: 10.1103/PhysRevC.91.014904. arXiv:1410.5396 [hep-ph]
  39. 39.
    M. Nahrgang, J. Aichelin, S. Bass, P.B. Gossiaux, K. Werner, Nucl. Phys. A 931, 575 (2014). doi:  10.1016/j.nuclphysa.2014.08.094. arXiv:1409.1464 [hep-ph]
  40. 40.
    M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, Phys. Rev. C 89(1), 014905 (2014). doi: 10.1103/PhysRevC.89.014905. arXiv:1305.6544 [hep-ph]
  41. 41.
    M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, Phys. Rev. C 90, (2), 024907 (2014). doi: 10.1103/PhysRevC.90.024907. arXiv:1305.3823 [hep-ph]
  42. 42.
    K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Phys. Rev. C 82, 044904 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    K. Werner, I. Karpenko, M. Bleicher, T. Pierog, S. Porteboeuf-Houssais, Phys. Rev. C 85, 064907 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    M. Bluhm, B. Kampfer, G. Soff, Phys. Lett. B 620, 131 (2005). [hep-ph/0411106]ADSCrossRefGoogle Scholar
  46. 46.
    H. Berrehrah, E. Bratkovskaya, W. Cassing, P.B. Gossiaux, J. Aichelin, M. Bleicher, Phys. Rev. C 89(5), 054901 (2014). doi: 10.1103/PhysRevC.89.054901. arXiv:1308.5148 [hep-ph]
  47. 47.
    M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner. arXiv:1602.03544 [nucl-th]
  48. 48.
    M.H. Thoma, in Quark-Gluon Plasma, vol. 2, ed. by R.C. Hwa, and references therein, pp. 51–134Google Scholar
  49. 49.
    A. Peshier, B. Kampfer, G. Soff, Phys. Rev. D 66, 094003 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    M. Bluhm, B. Kampfer, R. Schulze, D. Seipt, Eur. Phys. J. C 49, 205 (2007). [hep-ph/0608053]ADSCrossRefGoogle Scholar
  51. 51.
    W. Cassing, Eur. Phys. J. ST 168, 3 (2009)CrossRefGoogle Scholar
  52. 52.
    W. Cassing, Nucl. Phys. A 791, 365 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    L. Rauber, W. Cassing, Phys. Rev. D 89, 065008 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    H. Berrehrah, P.B. Gossiaux, J. Aichelin, W. Cassing, E. Bratkovskaya, Phys. Rev. C 90(6), 064906 (2014). doi: 10.1103/PhysRevC.90.064906. arXiv:1405.3243 [hep-ph]
  55. 55.
    T. Song, H. Berrehrah, D. Cabrera, J.M. Torres-Rincon, L. Tolos, W. Cassing, E. Bratkovskaya, Phys. Rev. C 92(1), 014910 (2015). doi: 10.1103/PhysRevC.92.014910. arXiv:1503.03039 [nucl-th]
  56. 56.
    T. Song, H. Berrehrah, D. Cabrera, W. Cassing, E. Bratkovskaya, Phys. Rev. C 93(3), 034906 (2016). doi: 10.1103/PhysRevC.93.034906. arXiv:1512.00891 [nucl-th]
  57. 57.
    B. Svetitsky, Phys. Rev. D 37, 2484 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    H. van Hees, R. Rapp, Phys. Rev. C 71, 034907 (2005). arXiv:nucl-th/0412015
  60. 60.
    H. van Hees, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006). arXiv:nucl-th/0508055
  61. 61.
    V. Greco, H. van Hees, R. Rapp, arXiv:0709.4452 [hep-ph]
  62. 62.
    M. He, R.J. Fries, R. Rapp, Phys. Rev. C 86, 014903 (2012). arXiv:1106.6006 [nucl-th]
  63. 63.
    S. Cao, G. -Y. Qin, S.A. Bass, arXiv:1308.0617 [nucl-th]
  64. 64.
    S.K. Das, F. Scardina, S. Plumari, V. Greco, arXiv:1309.7930 [nucl-th]
  65. 65.
    A. Andronic et al., arXiv:1506.03981 [nucl-ex]

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • H. Berrehrah
    • 1
  • M. Nahrgang
    • 2
  • T. Song
    • 3
  • V. Ozvenchuck
    • 4
  • P. B. Gossiaux
    • 5
  • K. Werner
    • 5
  • E. Bratkovskaya
    • 6
    • 7
  • J. Aichelin
    • 5
    Email author
  1. 1.FIAS, University of FrankfurtFrankfurtGermany
  2. 2.Department of PhysicsDuke UniversityDurhamUSA
  3. 3.FIAS, University of FrankfurtFrankfurtGermany
  4. 4.IFJ PANCracowPoland
  5. 5.SUBATECH, UMR 6457, Université de Nantes, Ecole des Mines de NantesNantes Cedex 3France
  6. 6.GSI Helmholtzzentrum Für Schwerionenforschung GmbHDarmstadtGermany
  7. 7.Germany and Institut for Theoretical PhysicsJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations