Skip to main content

Classical and Quantum Relativistic Mechanics of a Spinning Particle

  • Chapter
  • First Online:
Classical Mechanics
  • 3396 Accesses

Abstract

Search for the relativistic equations that describe evolution of rotational degrees of freedom and their influence on the trajectory of a spinning body, represents a problem with a long and fascinating history. Closely related problem consists in establishing of classical equations that could mimic quantum mechanics of an elementary particle with spin in a semiclassical approximation. The relationship among classical and quantum descriptions has an important bearing, providing interpretation of results of quantum-field-theory computations in usual terms: particles and their interactions. In this Chapter we develop the Lagrangian and Hamiltonian formulations of a particle with rotational degrees of freedom. Taking a variational problem as the starting point, we avoid the ambiguities and confusion, otherwise arising in the passage from Lagrangian to Hamiltonian description and vice-versa. Besides, it essentially fixes the possible form of interaction with external fields. We show that so called vector model of spin represents a unified conceptual framework, allowing to collect and tie together a lot of remarkable ideas, observations and results accumulated over almost a century of studying this subject. On the classical level, the vector model adequately describes spinning particle in an arbitrary gravitational and electromagnetic fields. Moreover, taking into account the leading relativistic corrections it explains the famous one-half factor in non-relativistic Hamiltonian. Canonical quantization of the model yields one-particle relativistic quantum mechanics with positive-energy states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quantum electrodynamics gives g = 2. 002322 due to radiative corrections.

  2. 2.

    There is an elegant formalism developed by Berezin and Marinov [42] based on using of anticommuting (Grassmann) variables for the description of spin. We present here another formulation based on commuting variables, without appealing to a rather formal methods of the Grassmann mechanics.

  3. 3.

    Note that this coincides with S appeared in (9.15).

  4. 4.

    On-shell symmetries considered as trivial symmetries, see [43].

  5. 5.

    With the factor \(-\frac{i} {4}\) in (9.63) and with the standard transformation law for a vector, δ v μ  = ω μ ν v ν , the function \(v_{\mu }\bar{\varPsi }\gamma ^{\mu }\varPsi\) is a scalar function.

  6. 6.

    For an electron interacting with electromagnetic field this analysis has been repeated by Feynman in [65].

  7. 7.

    In discussing this factor often refer to Thomas precession [52]. We will not touch this delicate and controversial issue [72, 73] because of the covariant formalism automatically accounts the Thomas precession [15].

  8. 8.

    Some models of doubly special relativity predict rainbow geometry at Planck scale [83].

  9. 9.

    Our S is twice of that of Dixon.

  10. 10.

    Besides S μ ν P ν  = 0, there are known others supplementary spin conditions. In this respect we point out that the MPTD theory implies this condition with certain P ν written in Eq. (9.258). Introducing κ, we effectively changed P ν and hence changed the supplementary spin condition. For instance, when κ = 1 and in the space with ∇R = 0, we have \(P^{\mu } = \frac{\tilde{m}c} {\sqrt{-\dot{x}g\dot{x}}}\dot{x}^{\mu }\) instead of (9.258).

  11. 11.

    Under the finite transformations xμ = Λ μ ν (ω)x ν, Ψ′ = D(ω)Ψ and Ψ = Ψ D (ω), where \(D = e^{\frac{i} {4} \omega _{\mu \nu }\sigma ^{\mu \nu } }\), the \(\bar{\sigma }^{\mu }\) is an invariant tensor, that is \((D^{\dag }\bar{\sigma }_{\mu }D)\varLambda ^{\mu }_{\nu } =\bar{\sigma } _{\nu }\). For the proof, see [59, 61].

  12. 12.

    Note that \(\bar{\xi }\) can be considered as conjugated momentum for ψ, then the passage from (9.374) to (9.377) is just the passage from a Lagrangian to Hamiltonian formulation. A similar interpretation was developed for the Schrodinger equation in Sect. 2.9.1

Bibliography

  1. E. Cartan, Leçons sur les Invariants Intégraux (Hermann, Paris, 1922)

    MATH  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd edn. (Springer, New York, 1989)

    Book  Google Scholar 

  3. A.A. Kirillov, Elements of the Theory of Representations (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  4. V.P. Maslov, M.V. Fedoruk, Semiclassical Approximation in Quantum Mechanics (D. Reidel Publishing Company, Dordrecht, 1981)

    Book  Google Scholar 

  5. A.T. Fomenko, Symplectic Geometry (Gordon and Breach, New York, 1988)

    MATH  Google Scholar 

  6. J.M. Souriau, Structure des systémes dynamiques (Dund, Paris, 1970)

    MATH  Google Scholar 

  7. J.E. Marsden, R.H. Abraham, Foundations of Mechanics, 2nd edn. (Benjamin-Cummings Publishing Company, Inc., Reading, 1978)

    MATH  Google Scholar 

  8. P.A.M. Dirac, Can. J. Math. 2, 129 (1950); Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    Article  MathSciNet  Google Scholar 

  9. A.A. Slavnov, L.D. Faddeev, Introduction in Quantum Theory of Gauge Fields (Nauka, Moscow, 1978)

    MATH  Google Scholar 

  10. D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  11. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  12. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980)

    MATH  Google Scholar 

  13. L.D. Landau, E.M. Lifshits, Mechanics (Pergamon Press, Oxford, 1976)

    MATH  Google Scholar 

  14. F.R. Gantmacher, Lectures on Analytical Mechanics (MIR, Moscow, 1970)

    Google Scholar 

  15. S. Weinberg, Gravitation and Cosmology (Willey, New York, 1972)

    Google Scholar 

  16. L.D. Landau, E.M. Lifshits, The Classical Theory of Fields (Pergamon Press, Oxford, 1980)

    Google Scholar 

  17. W. Pauli, Theory of Relativity (Pergamon Press, Oxford, 1958)

    MATH  Google Scholar 

  18. P.G. Bergmann, Introduction to the Theory of Relativity (Academic Press, New York, 1967)

    Google Scholar 

  19. V.A. Ugarov, Special Theory of Relativity (Mir Publishers, Moscow, 1979)

    Google Scholar 

  20. R. Feynman, P. Leighton, M. Sands, The Feynman Lectures on Physics: Commemorative Issue, vol. 2 (Addison-Wesley, Reading, 1989)

    Google Scholar 

  21. H. Hertz, The Principles of Mechanics Presented in a New Form (Dover Publications, New York, 1956)

    Google Scholar 

  22. P.S. Wesson, Five-Dimensional Physics: Classical and Quantum Consequences of Kaluza-Klein Cosmology (World Scientific, Singapore, 2006)

    Book  MATH  Google Scholar 

  23. V.S. Vladimirov, Equations of Mathematical Physics, 3rd edn. (Izdatel’stvo Nauka, Moscow, 1976), 528p. In Russian. (English translation: Equations of Mathematical Physics, ed. by V.S. Vladimirov (M. Dekker, New York, 1971)

    Google Scholar 

  24. A.A. Deriglazov, Phys. Lett. B 626 243–248 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Ehrenberg, R.E. Siday, Proc. R. Soc. Lond. B 62, 8 (1949)

    Article  Google Scholar 

  26. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Schrödinger, Ann. Phys. 81, 109 (1926); See also letters by Shrödinger to Lorentz in: K. Przibram, Briefe zür Wellenmechanik (Wien, 1963)

    Article  Google Scholar 

  28. H. von Helmholtz, J. Math. C, 151 (1886)

    Google Scholar 

  29. K.S. Stelle, Phys. Rev. D16, 953–969 (1977)

    ADS  MathSciNet  Google Scholar 

  30. R.P. Woodard, How Far Are We from the Quantum Theory of Gravity? arXiv:0907.4238 [gr-qc]

    Google Scholar 

  31. M.V. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4, 385 (1850)

    Google Scholar 

  32. D. Bohm, Phys. Rev. 85, 166, 180 (1952)

    Article  ADS  Google Scholar 

  33. F. Mandl, Introduction to Quantum Field Theory (Interscience Publishers Inc., New York, 1959)

    Google Scholar 

  34. W. Yourgrau, S. Mandelstam, Variational Principles in Dynamics and Quantum Theory (Pitman/W. B. Sanders, London/Philadelphia, 1968)

    MATH  Google Scholar 

  35. R.M. Wald, General Relativity (The University of Chicago Press, Chicago/London, 1984)

    Book  MATH  Google Scholar 

  36. P.A.M. Dirac, Quantum Mechanics, 4th edn. (Oxford University Press, London, 1958)

    MATH  Google Scholar 

  37. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964)

    MATH  Google Scholar 

  38. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  39. J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951); P.G. Bergmann, I. Goldberg, Phys. Rev. 98, 531 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.A. Deriglazov, Phys. Lett. A 373 3920–3923, (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  42. F.A. Berezin, M.S. Marinov, JETP Lett. 21, 320 (1975); Ann. Phys. 104, 336 (1977)

    ADS  Google Scholar 

  43. V.A. Borokhov, I.V. Tyutin, Phys. At. Nucl. 61, 1603 (1998); Phys. At. Nucl. 62, 10 (1999)

    Google Scholar 

  44. D.M. Gitman, I.V. Tyutin, Int. J. Mod. Phys. A 21, 327 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. A.A. Deriglazov, K.E. Evdokimov, Int. J. Mod. Phys. A 15, 4045 (2000)

    ADS  MathSciNet  Google Scholar 

  46. A.A. Deriglazov, J. Math. Phys. 50, 012907 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Henneaux, C. Teitelboim, J. Zanelli, Nucl. Phys. B 332, 169 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  48. A.A. Deriglazov, Z. Kuznetsova, Phys. Lett. B 646, 47 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Weinberg, The Quantum Theory of Fields, vol. 1 (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  50. S. Weinberg, Lectures on Quantum Mechanics, vol. 1 (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  51. J. Frenkel, Die elektrodynamik des rotierenden elektrons. Z. Phys 37, 243 (1926)

    Article  ADS  MATH  Google Scholar 

  52. L.H. Thomas, The kinematics of an electron with an axis. Philos. Mag. J. Sci. 3 S.7, No.13, 1 (1927)

    Google Scholar 

  53. M. Mathisson, Neue mechanik materieller systeme. Acta Phys. Polon. 6, 163 (1937); Republication: Gen.  Rel. Grav. 42, 1011 (2010)

    Google Scholar 

  54. A. Papapetrou, Spinning test-particles in general relativity. I. Proc. R. Soc. Lond. A 209, 248 (1951)

    Google Scholar 

  55. W.M. Tulczyjew, Motion of multipole particles in general relativity theory binaries. Acta Phys. Polon. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  56. W.G. Dixon, A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cimento 34, 317 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  57. F.A.E. Pirani, Acta. Phys. Polon. 15, 389 (1956)

    ADS  MathSciNet  Google Scholar 

  58. H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968)

    Google Scholar 

  59. A.O. Barut, Electrodynamics and Classical Theory of Fields and Particles (MacMillan, New York, 1964)

    Google Scholar 

  60. I.B. Khriplovich, A.A. Pomeransky, Equations of motion of spinning relativistic particle in external fields. J. Exp. Theor. Phys. 86, 839 (1998)

    Article  ADS  Google Scholar 

  61. I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (Institute of Physics Publishing, Bristol and Philadelphia, 1995/1998)

    Google Scholar 

  62. R.D. Pisarski, Theory of curved paths. Phys. Rev. D 34, 670 (1986)

    Google Scholar 

  63. A.A. Deriglazov, A. Nersessian, Rigid particle revisited: extrinsic curvature yields the Dirac equation. Phys. Lett. A 378, 1224–1227 (2014)

    Google Scholar 

  64. E. Schrödinger, Sitzunger. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)

    Google Scholar 

  65. R.P. Feynman, Quantum Electrodynamics (W.A. Benjamin, New York, 1961)

    MATH  Google Scholar 

  66. M.H.L. Pryce, The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 195, 62 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. L.L. Foldy, S.A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950)

    Article  ADS  MATH  Google Scholar 

  68. A.A. Deriglazov, A.M. Pupasov-Maksimov, Geometric constructions underlying relativistic description of spin on the base of non-grassmann vector-like variable. SIGMA 10, 012 (2014)

    MathSciNet  MATH  Google Scholar 

  69. E. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40 (1), 149 (1939)

    Google Scholar 

  70. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA 34 (5), 211 (1948)

    Google Scholar 

  71. A.J. Hanson, T. Regge, The relativistic spherical top. Ann. Phys. 87 (2), 498 (1974)

    Google Scholar 

  72. S.S. Stepanov, Thomas precession for spin and for a rod. Phys. Part. Nucl. 43, 128 (2012)

    Article  Google Scholar 

  73. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  74. A. Staruszkiewicz, Fundamental relativistic rotator. Acta Phys. Polon. B Proc. Suppl. 1, 109 (2008)

    Google Scholar 

  75. A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung. Nucl. Phys. B 885, 1 (2014)

    Google Scholar 

  76. A. Trautman, Lectures on general relativity. Gen. Rel. Grav. 34, 721 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. A.A. Deriglazov, A. Pupasov-Maksimov, Relativistic corrections to the algebra of position variables and spin-orbital interaction. Phys. Lett. B 761, 207 (2016)

    Google Scholar 

  78. A.A. Deriglazov, A.M. Pupasov-Maksimov, Lagrangian for Frenkel electron and position‘s non-commutativity due to spin. Eur. Phys. J. C 74, 3101 (2014)

    Article  Google Scholar 

  79. R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. W. Guzmán Ramírez, A.A. Deriglazov, A.M. Pupasov-Maksimov, Frenkel electron and a spinning body in a curved background. J. High Energy Phys. 1403, 109 (2014)

    Article  ADS  Google Scholar 

  81. W.G. Ramirez, A.A. Deriglazov, Lagrangian formulation for Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. Phys. Rev. D 92, 124017 (2015)

    Google Scholar 

  82. A.A. Deriglazov, Lagrangian for the Frenkel electron. Phys. Lett. B 736, 278 (2014)

    Article  ADS  MATH  Google Scholar 

  83. J. Magueijo, L. Smolin, Gravity’s rainbow. Class. Quantum Gravity 21, 1725 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. J.B. Conway, A Course in Functional Analysis (Springer, Berlin, 1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deriglazov, A. (2017). Classical and Quantum Relativistic Mechanics of a Spinning Particle. In: Classical Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-44147-4_9

Download citation

Publish with us

Policies and ethics