Skip to main content

Glutathione-Related Enzyme System: Glutathione Reductase (GR), Glutathione Transferases (GSTs) and Glutathione Peroxidases (GPXs)

  • Chapter
  • First Online:
Redox State as a Central Regulator of Plant-Cell Stress Responses

Abstract

The glutathione-related enzymes are usually considered to accompany the main non-enzymatic antioxidative compounds of the ascorbate–glutathione cycle. Taking into account that the redox processes are not spontaneous in cells, but the adequate reaction velocity and appropriate specificity are achieved by the catalyzing activity of enzymes, special attention has raised toward the glutathione-utilizing enzymes. Glutathione reductase (GR) is a NADPH-dependent oxidoreductase which catalyzes the conversion of oxidized glutathione (GSSG) to reduced glutathione (GSH). Some members of the diverse glutathione transferase (GST) enzyme family have GSH-dependent thiol transferase activity and participate in the recycling of antioxidants (ascorbate, flavonoids, quinones), while other isoenzymes, due to their S-transferase activity, are involved in the detoxification mechanisms using GSH as co-substrate. A significant portion of GST isoenzymes also has glutathione peroxidase activity and can convert lipid peroxides and other peroxides to less harmful compounds. The plant glutathione peroxidase enzymes (GPXs) may be involved in the detoxification of H2O2 and organic hydroperoxides and in the regulation of the cellular redox homeostasis by maintaining the thiol/disulfide balance. Most of plant GPXs prefer to use thioredoxin (TRX) instead of glutathione as a reducing agent, and it is thought that the GPXs may represent a link between the glutathione- and the thioredoxin-based system. The GR, GPX and some GST isoenzymes have Cys in their active center and thus are directly regulated by redox status. This chapter summarizes their roles in stress responses as antioxidant enzymes, in determining the redox status of cells, and emphasizes their connection to redox signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achary VMM, Reddy CS, Pandey P, Islam T, Kaul T, Reddy MK (2015) Glutathione reductase a unique enzyme: molecular cloning, expression and biochemical characterization from the stress adapted C-4 plant, Pennisetum glaucum (L.) R. Br. Mol Biol Rep 42:947–962

    Article  CAS  PubMed  Google Scholar 

  • Aller I, Rouhier N, Meyer AJ (2013) Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Front Plant Sci 4:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Armstrong RN (1993) Glutathione S-transferases—Structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol RAMB 69:1–44

    Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  CAS  PubMed  Google Scholar 

  • Basantani M, Srivastava A (2007) Plant glutathione transferases—a decade falls short. Can J Bot 85:443–456

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Mata-Perez C, Valderrama R, Padilla MN, Lopez-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bela K, Horvath E, Galle A, Szabados L, Tari I, Csiszar J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Brenot A, King KY, Janowiak B, Griffith O, Caparon MG (2004) Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun 72:408–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrie C, Murcha MW, Whelan J (2010) An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biol 10:249

    Google Scholar 

  • Chang CC, Ślesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants. Plant Physiol 135:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin ML, De Carvalho MHC, D’Arcy-Lameta A (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    Article  CAS  Google Scholar 

  • Couturier J, Chibani K, Jacquot JP, Rouhier N (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4:105

    PubMed  PubMed Central  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43:266–280

    Article  CAS  PubMed  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé A, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  CAS  PubMed  Google Scholar 

  • Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP (2016) Nuclear thiol redox systems in plants. Plant Sci 243:84–95

    Article  CAS  PubMed  Google Scholar 

  • Diao Y, Xu H, Li G, Yu A, Yu X, Hu W, Zheng X, Li S, Wang Y, Hu Z (2014) Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Mol Biol Rep 41:4919–4927

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Jiang R, Lu Q, Wen X, Lu C (2016a) Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. BBA-Bioenerg 1857:665–677

    Article  CAS  Google Scholar 

  • Ding SH, Lu QT, Zhang Y, Yang ZP, Wen XG, Zhang LX, Lu CM (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    Article  CAS  PubMed  Google Scholar 

  • Ding SH, Wang L, Yang ZP, Lu QT, Wen XG, Lu CM (2016b) Decreased glutathione reductase leads to early leaf senescence in Arabidopsis. J Int Plant Biol 58:29–47

    Article  CAS  Google Scholar 

  • Dirr H, Reinemer P, Huber R (1994) X-ray crystal-structures of cytosolic glutathione S-transferases—Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem 220:645–661

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Cole DJ, Edwards R (1998a) Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol Biol 36:75–87

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Cummins I, Cole DJ, Edwards R (1998b) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants—identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Edwards R (2010a) Glutathione transferases. The Arabidopsis Book, pp e0131

    Google Scholar 

  • Dixon DP, Edwards R (2010b) Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. J Biol Chem 285:36322–36329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Droog F, Spek A, vanderKooy A, deRuyter A, Hoge H, Libbenga K, Hooykaas P, vanderZaal B (1995) Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35. Plant Mol Biol 29:413–429

    Google Scholar 

  • Drotar A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:35–40

    Article  CAS  Google Scholar 

  • Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol 157:2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Met Enzymol 401:169–186

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trend Plant Sci 5:193–198

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Planta 127:57–65

    Article  CAS  Google Scholar 

  • Eltayeb AE, Yamamoto S, Habora MEE, Yin LN, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61:3–10

    Article  CAS  Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Planta 100:234–240

    Article  CAS  Google Scholar 

  • Flohe L, Günzler W, Schock H (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antiox Redox Sign 18:2087–2090

    Article  CAS  Google Scholar 

  • Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S (2012) The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 53:1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Galiazzo F, Schiesser A, Rotilio G (1987) Glutathione peroxidase in yeast. Presence of the enzyme and induction by oxidative conditions. Biochem Biophys Res Com 147:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Gallé Á, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol 166:1878–1891

    Article  PubMed  CAS  Google Scholar 

  • Gaullier JM, Lafontant P, Valla A, Bazin M, Giraud M, Santus R (1994) Glutathione-peroxidase and glutathione-reductase activities towards glutathione-derived antioxidants. Biochem Biophys Res Com 203:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Springer, Berlin

    Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • Green R, O’brien P (1970) The cellular localisation of glutathione peroxidase and its release from mitochondria during swelling. BBA-Bioenerg 197:31–39

    Google Scholar 

  • Hakam N, Simon JP (2000) Molecular forms and thermal and kinetic properties of purified glutathione reductase from two populations of barnyard grass (Echinochloa crus-galli (L.) Beauv.: Poaceae) from contrasting climatic regions in North America. Can J Bot 78:969–980

    CAS  Google Scholar 

  • Herbette S, Labrouhe DTd, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Menn AL, Rousselle P, Ameglio T, Faltin Z, Branlard G, Eshdat Y, Julien JL, Drevet JR, Roeckel-Drevet P (2005) Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase. Biochim Biophys Acta 1724:108–118

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Roeckel-Drevet P, Drevet JR (2007) Seleno-independent glutathione peroxidases. FEBS J 274:2163–2180

    Article  CAS  PubMed  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Bela K, Papdi C, Gallé A, Szabados L, Tari I, Csiszár J (2015a) The role of Arabidopsis glutathione transferase F9 gene under oxidative stress in seedlings. Acta Biol Hung 66:406–418

    Article  PubMed  Google Scholar 

  • Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015b) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Funct Plant Biol 42:1129–1140

    Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Irzyk GP, Fuerst EP (1993) Purification and characterization of a glutathione-S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol 102:803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppesen MG, Ortiz P, Shepard W, Kinzy TG, Nyborg J, Andersen GR (2003) The crystal structure of the glutathione S-transferase-like domain of elongation factor 1B gamma from Saccharomyces cerevisiae. J Biol Chem 278:47190–47198

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS, Lee K, Lim D, Yoon SC, Yun DJ, Inoue Y, Cho MJ, Lee SY (2002) A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. J Biol Chem 277:12572–12578

    Article  CAS  PubMed  Google Scholar 

  • Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Sign Behav 5:171–175

    Article  CAS  Google Scholar 

  • Kilili KG, Atanassova N, Vardanyan A, Clatot N, Al-Sabarna K, Kanellopoulos PN, Makris AM, Kampranis SC (2004) Differential roles of Tau class glutathione S-transferases in oxidative stress. J Biol Chem 279:24540–24551

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Jang MG, Noh HY, Lee HJ, Sukweenadhi J, Kim JH, Kim SY, Kwon WS, Yang DC (2014) Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses. Gene 535:33–41

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Bio Med 40:2155–2165

    Article  CAS  Google Scholar 

  • Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and properties of glutathione-reductase from Arabidopsis thaliana. Plant Cell Physiol 34:1259–1266

    CAS  Google Scholar 

  • Kumar S, Kaur A, Chattopadhyay B, Bachhawat AK (2015) Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana: role of the ChaC/GCG family of gamma-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase. Biochem J 468:73–85

    Article  CAS  PubMed  Google Scholar 

  • Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N (2014) The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol 5:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam LK, Zhang Z, Board PG, Xun L (2012) Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases. Biochem Us 51:5014–5021

    Article  CAS  Google Scholar 

  • Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21:3749–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotech J 9:661–673

    Article  CAS  Google Scholar 

  • Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, Liu JY (2000) Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. Biochim Biophys Acta 1493:225–230

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Carrie C, Duncan O, Ho LHM, Howell KA, Murcha MW, Whelan J (2007) Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19:3739–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li J (2002) Characterization of an ultra-violet inducible gene that encodes glutathione S-transferase in Arabidopsis thaliana. Acta Genetica Sin 29:458–460

    Google Scholar 

  • Liu YJ, Han XM, Ren LL, Yang HL, Zeng QY (2013) Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiol 161:773–786

    Article  CAS  PubMed  Google Scholar 

  • Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12:1939–1950

    Google Scholar 

  • Ma LH, Takanishi CL, Wood MJ (2007) Molecular mechanism of oxidative stress perception by the Orp1 protein. J Biol Chem 282:31429–31436

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family—an evolutionary overview. FEBS J 275:3959–3970

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol 47:127–158

    Article  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin—a fold for all reasons. Structure 3:245–250

    Article  CAS  PubMed  Google Scholar 

  • Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Nat Acad Sci U S A 106:9109–9114

    Article  CAS  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  CAS  Google Scholar 

  • Mills GC (1957) Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229:189–197

    CAS  PubMed  Google Scholar 

  • Mohsenzadeh S, Esmaeili M, Moosavi F, Shahrtash M, Saffari B, Mohabatkar H (2011) Plant glutathione S-transferase classification, structure and evolution. Afr J Biotech 10:8160–8165

    Article  CAS  Google Scholar 

  • Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mozer TJ, Tiemeier DC, Jaworski EG (1983) Purification and characterization of corn glutathione-S-transferase. Plant Physiol 72:174–174

    Google Scholar 

  • Muller M, Zechmann B, Zellnig G (2004) Ultrastructural localization of glutathione in Cucurbita pepo plants. Protoplasma 223:213–219

    Article  CAS  PubMed  Google Scholar 

  • Munyampundu JP, Xu YP, Cai XZ (2016) Phi class of glutathione S-transferase gene superfamily widely exists in nonplant taxonomic groups. Evol Bioinform 12:59–71

    Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. The Arabidopsis Book 9:e0142

    Google Scholar 

  • Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotech Biochem 80:870–877

    Article  CAS  Google Scholar 

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struc Biol 15:716–723

    Article  CAS  Google Scholar 

  • Overbaugh JM, Fall R (1985) Characterization of a selenium-independent glutathione peroxidase from Euglena gracilis. Plant Physiol 77:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Ozturk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin pp 91–113

    Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology—a charging concept. Plant Physiol Biochem 48:292–300

    Article  CAS  Google Scholar 

  • Rajeevkumar S, Jagadeesan H, Ramalingam S (2015) Transgenic plants and antioxidative defense: present and future? In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Berlin pp 353–370

    Google Scholar 

  • Rao AC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin pp 111–147

    Google Scholar 

  • Rennenberg H (1982) Glutathione metabolism and possible biological roles in higher-plants. Phytochemistry 21:2771–2781

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Bio Med 30:1191–1212

    Article  CAS  Google Scholar 

  • Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant, Cell Environ 38:266–279

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu DF, Wang LY, Duan M, Deng YS, Meng QW (2011) Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem 49:1228–1237

    Article  CAS  Google Scholar 

  • Soltesz A, Timar I, Vashegyi I, Toth B, Kellos T, Szalai G, Vagujfalvi A, Kocsy G, Galiba G (2011) Redox changes during cold acclimation affect freezing tolerance but not the vegetative/reproductive transition of the shoot apex in wheat. Plant Biol 13:757–766

    Article  CAS  PubMed  Google Scholar 

  • Sommer A, Boger P (1999) Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic Biochem Physiol 63:127–138

    Article  CAS  Google Scholar 

  • Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Planta 138:360–371

    Article  CAS  Google Scholar 

  • Sugimoto M, Oono Y, Gusev O, Matsumoto T, Yazawa T, Levinskikh MA, Sychev VN, Bingham GE, Wheeler R, Hummerick M (2014) Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol 14:1–11

    Article  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Trivedi DK, Gill SS, Yadav S, Tuteja N (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Sign Behav 8:e23021

    Article  CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    Article  CAS  PubMed  Google Scholar 

  • Turner LB, Pollock CJ (1993) The effects of temperature and Ph on the apparent Michaelis constant of glutathione-reductase from maize (Zea mays L.). Plant, Cell Env 16:289–295

    Article  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F (2014) Sulfenome mining in Arabidopsis thaliana. Proc Nat Acad Sci U S A 111:11545–11550

    Article  CAS  Google Scholar 

  • Xun L, Belchik SM, Xun R, Huang Y, Zhou H, Sanchez E, Kang C, Board PG (2010) S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases. Biochem J 428:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XD, Li WJ, Liu JY (2005) Isolation and characterization of a novel PHGPx gene in Raphanus sativus. Biochim Biophys Acta 1728:199–205

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Tamaoki M, Shikano T, Nakajima N, Ogawa D, Ioki M, Aono M, Kubo A, Kamada H, Inoue Y, Saji H (2006) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, Berlin, pp 149–158

    Google Scholar 

  • Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun JQ, Wang H, Rennenberg H, Teale W, Paponov I, Zhou WK, Li CY, Li XG, Palme K (2013) Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25:4451–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Muller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang PY, Liu SH, Chen KS (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076

    Article  CAS  Google Scholar 

  • Zhang YJ, Wang W, Yang HL, Li Y, Kang XY, Wang XR, Yang ZL (2015) Molecular properties and functional divergence of the dehydroascorbate reductase gene family in lower and higher plants. PLoS ONE 10:1371

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian National Scientific Research Foundation [grant number OTKA K 105956]. We are grateful to Dr. Tímea Mai for critical reading and linguistic corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Csiszár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Csiszár, J., Horváth, E., Bela, K., Gallé, Á. (2016). Glutathione-Related Enzyme System: Glutathione Reductase (GR), Glutathione Transferases (GSTs) and Glutathione Peroxidases (GPXs). In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_7

Download citation

Publish with us

Policies and ethics