Skip to main content

Oxidative Stress and its Role in Peroxisome Homeostasis in Plants

  • Chapter
  • First Online:
Redox State as a Central Regulator of Plant-Cell Stress Responses

Abstract

In plants, reactive oxygen species (ROS) are produced as by-products of a variety of metabolic processes occurring in organelles such as mitochondria, chloroplasts, and peroxisomes. ROS can damage plant cells, but can also act as signaling molecules in plant stress response. Peroxisomes are major producers of ROS and also contain plenty of ROS scavenging systems and thus play a key role in ROS signaling. Oxidative stress can regulate peroxisome homeostasis by affecting peroxisome biogenesis, through regulation by ROS-mediated peroxin oxidation or reduction. Moreover, oxidative stress can damage peroxisomes and lead to their degradation via pexophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11:635–646

    Article  CAS  PubMed  Google Scholar 

  • Agrawal G, Fassas SN, Xia ZJ, Subramani S (2016) Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER. J Cell Biol 212:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15:94–103

    Article  CAS  PubMed  Google Scholar 

  • Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annl Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Aung K, Hu J (2011) The Arabidopsis tail-anchored protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 is involved in the morphogenesis and proliferation of peroxisomes and mitochondria. Plant Cell 23:4446–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beevers H (1979) Microbodies in higher plants. Annl Rev Plant Physiol 30:159–193

    Article  CAS  Google Scholar 

  • Bener Aksam E, Jungwirth H, Kohlwein SD, Ring J, Madeo F, Veenhuis M, van der Klei IJ (2008) Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death. Free Rad Bio Med 45:1115–1124

    Article  CAS  Google Scholar 

  • Bielski BH, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2 with unsaturated fatty acids. J Biol Chem 258:4759–4761

    CAS  PubMed  Google Scholar 

  • Britt AB (1999) Molecular genetics of DNA repair in higher plants. Trend Plant Sci 4:20–25

    Article  Google Scholar 

  • Burkhart SE, Lingard MJ, Bartel B (2013) Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana. Genetics 193:125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272

    Article  CAS  PubMed  Google Scholar 

  • Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant, Cell Environ 31:492–505

    Article  CAS  Google Scholar 

  • Charlton WL, Johnson B, Graham IA, Baker A (2005) Non-coordinate expression of peroxisome biogenesis, β-oxidation and glyoxylate cycle genes in mature Arabidopsis plants. Plant Cell Rep 23:647–653

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Pro Nat Acad Sci USA 102:3459–3464

    Article  CAS  Google Scholar 

  • Cross LL, Ebeed HT, Baker A (2016) Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants. Biochim Biophys Acta 1863:850–862

    Article  CAS  PubMed  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annl Rev Pharmacol Toxicol 39:67–101

    Article  CAS  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, López-Huertas E (2016) ROS Generation in peroxisomes and its role in cell signaling. Plant Cell Physiol pii:pcw076

    Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du H, Kim S, Hur YS, Lee MS, Lee SH, Cheon CI (2015) A cytosolic thioredoxin acts as a molecular chaperone for peroxisome matrix proteins as well as antioxidant in peroxisome. Mol Cells 38:187–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hänsch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase: a new player in plant sulfur metabolism. J Biol Chem 276:46989–46994

    Article  CAS  PubMed  Google Scholar 

  • Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128:509–523

    Article  CAS  PubMed  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem 10:1723–1740

    Article  CAS  PubMed  Google Scholar 

  • Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B (2013) Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 25:4085–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosystems 143:81–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goto-Yamada S, Mano S, Nakamori C, Kondo M, Yamawaki R, Kato A, Nishimura M (2014) Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant Cell Physiol 55:482–496

    Article  CAS  PubMed  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annl Rev Plant Biol 59:115–142

    Article  CAS  Google Scholar 

  • Hänsch R, Lang C, Rennenberg H, Mendel RR (2007) Significance of plant sulfite oxidase. Plant Biol 9:589–595

    Article  PubMed  CAS  Google Scholar 

  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: Proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    Article  CAS  PubMed  Google Scholar 

  • Hazra PP, Suriapranata I, Snyder WB, Subramani S (2002) Peroxisome remnants in pex3△ cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574

    Article  CAS  PubMed  Google Scholar 

  • Hesberg C, Hansch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem 279:13547–13554

    Article  CAS  PubMed  Google Scholar 

  • Hettema EH, Erdmann R, van der Klei I, Veenhuis M (2014) Evolving models for peroxisome biogenesis. Curr Opin Cell Biol 29:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF, Lu YT (2010) Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3′-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. Plant, Cell Environ 33:1656–1670

    Article  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD (2009) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285:6739–6749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataya AR, Schei E, Lillo C (2015) MAP kinase phosphatase 1 harbors a novel PTS1 and is targeted to peroxisomes following stress treatments. J Plant Physiol 179:12–20

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Hu J (2009) Dynamics of peroxisome abundance: a tale of division and proliferation. Curr Opin Plant Biol 12:781–788

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee H, Lee HN, Kim SH, Shin KD, Chung T (2013) Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 25:4956–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch J, Brocard C (2011) Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  CAS  PubMed  Google Scholar 

  • Kunz HH, Scharnewski M, Feussner K, Feussner I, Flügge UI, Fulda M, Gierth M (2009) The ABC transporter PXA1 and peroxisomal β-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. Plant Cell 21:2733–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu J, Wang G, Cha JY, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, Kim WY, Yun DJ, Schumaker KS, Chen Z, Guo Y (2015) A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 27:908–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingard MJ, Bartel B (2009) Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol 151:1354–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingard MJ, Monroe-Augustus M, Bartel B (2009) Peroxisome-associated matrix protein degradation in Arabidopsis. Pro Nat Acad Sci USA 106:4561–4566

    Article  CAS  Google Scholar 

  • Logan BA (2007) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 250–267

    Chapter  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Agrawal G, Subramani S (2011) Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Hagstrom D, Polley SG, Subramani S (2013) Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 288:27220–27231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall PA, Dyer JM, Quick ME, Goodman JM (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J Cell Biol 135:123–137

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Hölscher C, Schwöppe C, von Schaewen A (2011) Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant J 66:745–758

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 525:181–194

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trend Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annl Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Montillet JL, Chamnongpol S, Rustérucci C, Dat J, van de Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullen RT, Trelease RN (2006) The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. Biochim Biophys Acta 1763:1655–1668

    Article  CAS  PubMed  Google Scholar 

  • Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Hayashi M, Kato A, Yamaguchi K, Mano S (1996) Functional transformation of microbodies in higher plant cells. Cell Struct Funct 21:387–393

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12:1067–1083

    Article  CAS  PubMed  Google Scholar 

  • Orth T, Reumann S, Zhang X, Fan J, Wenzel D, Quan S, Hu J (2007) The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis. Plant Cell 19:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pedersen L, Henriksen A (2005) Acyl-CoA oxidase 1 from Arabidopsis thaliana. Structure of a key enzyme in plant lipid metabolism. J Mol Biol 345:487–500

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 2007:197–204

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A (2010) Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J Biol Chem 285:24078–24088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trend Biochem Sci 25:502–508

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot 116:475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2013) Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25:4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Oikawa K, Yoshimoto K, Goto-Yamada S, Mano S, Yamada K, Kondo M, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2014) Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy 10:936–937

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2008) Photosynthetic traits and activities of antioxidant enzymes in Blackgram (Vigna mungo L. Hepper) under cadmium Stress. Amer J Plant Physiol 3:25–32

    Article  CAS  Google Scholar 

  • Smith PM, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy R, Micossi E, Alphey MS, Germain V, Bryce JH, Smith SM, Leonard GA, Hunter WN (2006) The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. J Mol Biol 359:347–357

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Foyer CH (2004) Roles for reactive oxygen species and antioxidants in plant mitochondria. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function, advances in photosynthesis and respiration. Springer, Berlin pp 307–320

    Google Scholar 

  • Trelease RN, Lingard MJ (2006) Participation of the plant ER in peroxisomal biogenesis. In: Robinson DG (ed) The plant endoplasmic reticulum. Springer, Endoplasmic Reticulum, pp 205–232

    Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2008) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  Google Scholar 

  • van der Zand A, Tabak HF (2013) Peroxisomes: offshoots of the ER. Curr Opin Cell Biol 25:449–454

    Article  PubMed  CAS  Google Scholar 

  • van der Zand A, Gent J, Braakman I, Tabak HF (2012) Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 149:397–409

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Visser NV, Veenhuis M, van der Klei IJ (2003) Physical interactions of the peroxisomal targeting signal 1 receptor pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 278:43340–43345

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li S, Liu Y, Ma C (2015) Redox regulated peroxisome homeostasis. Redox Biol 4:104–108

    Article  CAS  Google Scholar 

  • Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M, Toyooka K, Shirasu K, Nishimura M, Ohsumi Y (2014) Organ-specific quality control of plant peroxisomes is mediated by autophagy. J Cell Sci 127:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Young PG, Bartel B (2016) Pexophagy and peroxisomal protein turnover in plants. BBA-Mol Cell Res 1863:999–1005

    CAS  Google Scholar 

  • Zhang X, Hu J (2009) Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis. Plant J 57:146–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu J (2010) The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division. Plant Cell 22:431–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol 104:889–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet 251:196–203

    CAS  PubMed  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17:3422–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:1445–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the Foundation for Taishan Scholar from the People’s Government of Shandong Province (tshw20130962) and Natural Science Foundation of Shandong Province (ZR2014CM002) to C.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Su, T., Shao, Q., Wang, P., Ma, C. (2016). Oxidative Stress and its Role in Peroxisome Homeostasis in Plants. In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_6

Download citation

Publish with us

Policies and ethics