Skip to main content

Plant Cell Redox Homeostasis and Reactive Oxygen Species

  • Chapter
  • First Online:
Redox State as a Central Regulator of Plant-Cell Stress Responses

Abstract

Plant cell redox homeostasis is formed as a result of the balance between the accumulation of reactive oxygen species (ROS), the functioning of the antioxidant enzymes system and antioxidants with low molecular weight. Complex of different changes occurs in plants under stress conditions which often lead to a variety of the intracellular and tissue functional disorders. Under these conditions for the survival, the functioning of the systems of homeostasis maintaining is extremely important. Understanding of the molecular mechanisms of resistance formation to adverse environmental factors is one of the most urgent issues that will help to cope with the problem of increasing plant resistance to stressors. Maintenance of cellular homeostasis in plants under the influence of various external factors is provided by a number of protective systems. Organization of metabolic pathways in plants characterized by having two main separate compartments, generating ATP and reducing equivalents: chloroplasts and mitochondria. The interaction of these two cell energetic organelles with opposite types of functions in plant involves in metabolite fluxes organizing, which is an integral controlled system specific only to the plant organism. Normally, ROS are generated by metabolic activity of the plants and act as signaling molecules for activating plant metabolic pathway. However, under environmental stresses, generation of ROS increases in different compartments of the cell such as chloroplast, peroxisomes and mitochondria. Higher accumulation of ROS leads to oxidative stress in plant causing damage to the cell membranes (lipid peroxidation) and biomolecules. To combat the harmful effect of increased ROS accumulation, plants are equipped with effective ROS-scavenging mechanisms. Plants have evolved two types of scavenging tools; enzymes (superoxide dismutase (SOD), catalase (CAT), monodehydroascorbate reductase (MDAR), dihydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione peroxidase (GP)) and antioxidant molecules like ascorbic acid, α—tocopherols, glutathione, prolin, flavonoids and carotenoids. In implementation of these reactions, vacuoles as well as cell wall and plasma membrane also play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic ascid

APX:

Ascorbate peroxidase

AsA (AA):

Ascorbate

CAT:

Catalase

DAR (DHAR):

Dehydroascorbate reductase

DHA:

Dehydroascorbate

DPPH:

1,1-Diphenyl-2-picrylhydrazyl radical

DTT:

DL-dithiothreitol

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

GP:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione S-transferase

HR:

Hypersensitive response

LHCs:

Light-harvesting complexes

MDA:

Monodehydroascorbate

MDAR (MDHAR):

Monodehydroascorbate reductase

NOX:

NADPH oxidases

PX:

Peroxidase

PS I, PS II:

Photosystem I, photosystem II

Rboh:

Respiratory burst oxidase homologs

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

V:

Violaxanthin

XOD:

Xanthine oxidase

Z:

Zeaxanthin

References

  • Afanas’ev IB (1985) Superoxide ion: chemistry and biological implications, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Google Scholar 

  • Apel A, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annl Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (1999)  The water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K, Takahashi M (1987) Production and Scavenging of Active Oxygen in Photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photinhibition, Elsevier, Amsterdam pp 227–287.

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Chen HJ, Wu SD, Huang GJ, Shen CY, Afiyanti M, Li WJ, Lin YH (2012) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 169:86–97

    Article  CAS  PubMed  Google Scholar 

  • Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM (1994) Manipulation of glutathione reductase in transgenic plants: implications for plant responses to environmental stress. Proc R Soc Edin 102:167–175

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dat J, Vandenabeele S, Vranov´a E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Google Scholar 

  • De Gara L, Locato V, Dipierro S, de Pinto MC (2010) Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respir Physiol Neurobiol 173 Suppl:S13–19

    Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Flors C, Nonell S (2006) Light and singlet oxygen in plant defense against pathogens: Phototoxic phenalonephytoalexins. Acc Chem Res 39:293–300

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stresses and amelioration of defense systems in plants. CRC Press, Boca Raton, Florida USA pp 1–42

    Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Planta 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Trebst A, Noctor G (2005) Protective and signalling functions of ascorbate, glutathione and tocopherol in chloroplasts. In: Demmig A, Adams WW (eds) Advances in photosynthesis and respiration: photoprotection, photoinhibition, gene regulation, and environment. Springer, The Netherlands, pp 241–268

    Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photooxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Guo YK, Lin SH, Fang YY, Bai JG (2010) Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Sci Hortic 126:20–26

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–3419

    Article  PubMed  PubMed Central  Google Scholar 

  • Goraya GK, Asthir B (2016) Magnificant role of intracellular reactive oxygen species production and its scavenging encompasses downstream processes. J Plant Biol 59:215–222

    Article  CAS  Google Scholar 

  • Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM (2016) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant, Cell Environ. doi:10.1111/pce.12711

    Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56:2601–2609

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Holocher K (1994) Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Nat Acad Sci USA 96:8762–8767

    Article  CAS  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4:393–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubany-Mari T, Munne-Bosch S, Lopez-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus l., to summer drought. J Exp Bot 60:107–120

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist L (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11:982–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandaker MM, Boyce AN, Osman N (2012) The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [blume] merrill & LM. Perry var. Jambumadu) fruits. Plant Physiol Biochem 53:101–110

    Article  CAS  PubMed  Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov V (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Krumova K, Cosa G (2016) Overview of reactive oxygen species, in singlet oxygen: applications in biosciences and nanosciences. In: Nonell A, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences. Roy Soc Chem Lond 1:1–21

    Google Scholar 

  • Kumar N, Ebel RC, Roberts PD (2011) H2O2 degradation is suppressed in kumquat leaves infected with Xanthomonas axonopodis pv. Citri Sci Hortic 130:241–247

    Article  CAS  Google Scholar 

  • Leegood RC, Walker DA (1982) Regulation of fructose-1,6-bisphosphatase activity in leaves. Planta 156:449–456

    Article  CAS  PubMed  Google Scholar 

  • Liao W-B, Zhang M-L, Huang G-B, Yu J-H (2012) Hydrogen peroxide in the vase solution increases vase life and keeping quality of cut Oriental × Trumpet hybrid lily “manissa”. Sci Hortic 139:32–33

    Google Scholar 

  • Marin E, Nussaime A, Quesada A, Gonneau M, Sotta B, Hugueney P, Fray A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:233–2342

    Google Scholar 

  • McRae DG, Thompson JE (1983) Senescence-dependent changes in superoxide anion production by illuminated chloroplasts from bean leaves. Planta 158:185–193

    Article  CAS  PubMed  Google Scholar 

  • Millard DL, Wiskich JT, Robertson RN (1964) Ion uptake by plant mitochondria. Biochemistry 52:996–1004

    CAS  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann HJ, Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274:4231–4238

    Article  CAS  PubMed  Google Scholar 

  • Moucheshi AS, Pakniyat H, Pirasteh-Anosheh H, Azooz MM (2014) Role of ROS signaling molecule in plants. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, The Netherland, pp 585–620

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg É, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses following the release of singlet oxygen in Arabidopsis thaliana. Plant Cell 15:2320–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastori GM, del Rio LA (1997) Natural senescence of pea leaves (an activated oxygen-mediated function for peroxisomes). Plant Physiol 113:411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez IB, Brown PJ (2014) The role of ROS signaling in cross-tolerance: from model to crop. Front Plant Sci 5:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach T, Krieger-Liszkay A (2014) Regulation of photosynthetic electron transport and photoinhibition. Curr Prot Pept Sci 15:351–362

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, U S A, vol 34, pp 343–406

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defence mechanism in plants under stressful conditions. J Bot ID 217037

    Google Scholar 

  • Sielewiesiuk J (2002) Why there are photo damages to photosystem II at low light intensities. Acta Physiol Planta 24:399–406

    Article  CAS  Google Scholar 

  • Smirnoff N (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, UK 317

    Book  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant, Cell Environ 35:259–270

    Article  CAS  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Del Valle NR, Huang P (2008) Redox regulation of cell survival. Antioxidant Redox Signal 10:1343–1374

    Article  CAS  Google Scholar 

  • Vassilian A, Trchounian A (2009) Environment oxidation-reduction potential and redox sensing by bacteria. In: TrchounianA (ed) Bacterial membranes. Ultrastructure, bioelectrochemistry, bioenergetics and biophysics. Research Signpost Publisher, Kerala, India pp 163–195

    Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220

    PubMed  PubMed Central  Google Scholar 

  • Zare S, Pakniyat H (2012) Changes in activities of antioxidant enzymes in oilseed rape in response to salinity stress. Int J Agri Crop Sci 4:398–403

    Google Scholar 

  • Zhang XL, Jia XF, Yu B, Gao Y, Bai JG (2011) Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci Hortic 129:656–662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trchounian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trchounian, A., Petrosyan, M., Sahakyan, N. (2016). Plant Cell Redox Homeostasis and Reactive Oxygen Species. In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_2

Download citation

Publish with us

Policies and ethics