Skip to main content

The Antioxidant Power of Arginine/Nitric Oxide Attenuates Damage Induced by Methyl Viologen Herbicides in Plant Cells

  • Chapter
  • First Online:
Redox State as a Central Regulator of Plant-Cell Stress Responses

Abstract

Since time ago, studying the redox homeostasis in cells is one of the most intriguing and complex puzzle that researchers are confronting to solve. In plant cells, several biochemical and molecular mechanisms have evolved for keeping the pro-oxidant/antioxidant environment between acceptable physiological ranges. Here, we present novel evidence supporting the amino acid l-arginine as a bioactive molecule with antioxidant capacity when plant cells are challenged by an acute oxidative stress triggered by the herbicide methyl viologen (MV). Our results are feeding the controversy generated about the presence of a nitric oxide synthase (NOS) gene in plants, since they indicate that the tandem formed by the NOS substrate l-arginine and the product of the NOS activity, nitric oxide (NO), are potent cellular resources for maintaining cell integrity and coping against high concentrations of reactive oxygen species.

N. Correa-Aragunde and P. Negri are contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelung W, Zhang X (2001) Determination of amino acid enantiomers in soils. Soil Biol Biochem 33:553–562

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acid 20:301–317

    Article  CAS  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  CAS  PubMed  Google Scholar 

  • Beligni M (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3:199–208

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant, Cell Environ 25:737–748

    Article  CAS  Google Scholar 

  • Bethke PC (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutin JP (1982) Purification, properties and subunit structure of arginase from Iris bulbs. Eur J Biochem 127:237–243

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Xiao L, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Cai J, Wang J (2016) Dietary arginine and N-carbamylglutamate supplementation enhances the antioxidant statuses of the liver and plasma against oxidative stress in rats. Food Funct 7:2303–2311

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee D, Ghosh S, Pal U (2011) Kinetics and mechanism of NO production in the RuIII-(edta) mediated oxidation of L-arginine with H2O2. Dalton Trans 40:683–685

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Del Río LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    Article  CAS  PubMed  Google Scholar 

  • Cortés-Giraldo I, Megías C, Alaiz M, Girón-Calle J, Vioque J (2016) Purification of free arginine from chickpea (Cicer arietinum) seeds. Food Chem 192:114–118

    Article  PubMed  Google Scholar 

  • Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, India, pp 155–166

    Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dodge A (1994) Herbicide action and effects on detoxification processes. In: Foyer CH (ed) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, PM Mullineaux, pp 219–223

    Google Scholar 

  • Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270:16315–16320

    Article  CAS  PubMed  Google Scholar 

  • Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn N, Meininger C, Haynes T, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Nsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179:1058–1069

    CAS  PubMed  Google Scholar 

  • Gao HJ, Yang HQ, Wang JX (2009) Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.): the tissue-specific formation of both nitric oxide and polyamines. Sci Hortic 119:147–152 (Amsterdam)

    Article  CAS  Google Scholar 

  • Gotte G, Amelio E, Russo S, Marlinghaus E, Musci G, Suzuki H (2002) Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett 520:153–155

    Article  CAS  PubMed  Google Scholar 

  • Hoque AM, Okuma E, Banu MN, Nakamura Y, Shimosishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Jeandroz S, Wipf Daniel, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Ka-Shu Wong G, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Sign 9:re2

    Google Scholar 

  • Kaiser G, Martinoia E, Wiemken A (1982) Rapid appearance of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method. Z Pflanzenphysiol 107:103–113

    Article  CAS  Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A (2000) Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol 41:864–873

    Article  CAS  PubMed  Google Scholar 

  • Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA, El-Khawas SA, Abd El-Monem AA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3:1517–1526

    CAS  Google Scholar 

  • Kishor PPB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Klepper LA (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:1475

    Article  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Cheng Z, Qin R, Qiu Y, Heng Y, Yang H, Ren Y, Wang X, Bi J, Ma X, Zhang X, Wang J, Lei C, Guo X, Wang J, Wu F, Jiang L, Wang H, Wan J (2013) OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant J 73:190–200

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Lea PJ (1982) Ammonia assimilation and amino acid metabolism. In: Nucleic acids and proteins in plants I. Springer, pp 5–64

    Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling 1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molesini B, Rotino GL, Spena A, Pandolfini T (2009) Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Note 2:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Molesini B, Mennella G, Martini F, Francese G, Pandolfini T (2015) Involvement of the putative N-acetylornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol 56:1084–1096

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138:372–383

    Article  CAS  PubMed  Google Scholar 

  • Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgarten M, Philippar K, Carri C, Mokranjac D, Soll J, Whelan J (2006) Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol 143:199–212

    Article  PubMed  Google Scholar 

  • Nagase S, Takemura K, Ueda A, Hirayama A, Aoyagi K, Kondoh M, Koyama A (1997) A novel nonenzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem Biophys Res Commun 233:150–153

    Article  CAS  PubMed  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  • Okumoto S (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346

    Article  CAS  PubMed  Google Scholar 

  • Okumoto S (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168

    Article  CAS  PubMed  Google Scholar 

  • Oland K (1959) Nitrogenous reserves of apple trees. Physiol Plant 12:594–648

    Article  Google Scholar 

  • Polacco JC, Mazzafera P, Tezotto T (2013) Opinion—nickel and urease in plants: still many knowledge gaps. Plant Sci 199–200:79–90

    Article  PubMed  Google Scholar 

  • Pudelski B, Kraus S, Soll J, Philippar K (2010) The plant PRAT proteins—preprotein and amino acid transport in mitochondria and chloroplasts. Plant Biol 12:42–55

    Article  CAS  PubMed  Google Scholar 

  • Rockel P (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    Article  CAS  PubMed  Google Scholar 

  • Rossig C, Reinbothe C, Gray J, Valdes O, von Wettstein D, Reinbothe S (2013) Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana. Proc Nat Acad Sci U S A 110:19962–19967

    Article  CAS  Google Scholar 

  • Shafiqul IM, Kim JS (2014) Characterization of a gene encoding acetylornithine deacetylase from rice. Biotechnology 13:54–60 (Faisalabad)

    Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu S, Saitoh Y, Yamamoto T, Momose K (1994) Stimulation by hydrogen peroxide of L-arginine metabolism to l-citrulline coupled with nitric oxide synthesis in cultured endothelial cells. Res Commun Chem Pathol Pharmacol 84:315–329

    CAS  PubMed  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles (I. Direct measurement of proton-linked transport). Plant Physiol 112:1375–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem 43:729–745

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180:620–630

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Jämtgård S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191:459–467

    Article  CAS  PubMed  Google Scholar 

  • Tapiero H, Mathe G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56:439–445

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2012) Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol 15:315–321

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Mendez A, Todd CD, Polacco JC (2008) The mitochondrial connection. Arginine degradation versus arginine conversion to nitric oxide. Trends Plant Sci 1106–1108

    Google Scholar 

  • Tun NN (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • VanEtten CH, Miller RW, Wolff IA, Jones Q (1963) Nutrients in seeds, amino acid composition of seeds from 200 angiospermous plant species. J Agric Food Chem 11:399–410

    Article  CAS  Google Scholar 

  • Wallner S, Hermetter A, Mayer B, Wascher TC (2001) The alpha-amino group of L-arginine mediates its antioxidant effect. Eur J Clin Invest 31:98–102

    Article  CAS  PubMed  Google Scholar 

  • Wascher TC, Posch K, Wallner S, Hermetter A, Kostner GM, Graier WF (1997) Vascular effects of l-Arginine: anything beyond a substrate for the NO-synthase? Biochem Biophys Res Commun 234:35–38

    Article  CAS  PubMed  Google Scholar 

  • Wijnands K, Castermans T, Hommen M, Meesters DM, Poeze M (2015) Arginine and citrulline and the immune response in sepsis. Nutrients 7:1426–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills RBH, Li Y (2016) Use of arginine to inhibit browning on fresh cut apple and lettuce. Postharvest Biol Technol 113:66–68

    Article  CAS  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP-2011-0903, and Agencia Nacional de Promoción Científica y Tecnológica PICTs-2011-2383 and -2013-0904 (FONCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lamattina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Correa-Aragunde, N., Negri, P., Del Castello, F., Foresi, N., Polacco, J.C., Lamattina, L. (2016). The Antioxidant Power of Arginine/Nitric Oxide Attenuates Damage Induced by Methyl Viologen Herbicides in Plant Cells. In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_16

Download citation

Publish with us

Policies and ethics