Skip to main content

Advanced Models for the Prediction of Forming Limit Curves

  • Chapter
  • First Online:

Part of the book series: ESAFORM Bookseries on Material Forming ((EBMF))

Abstract

During the forming of flat sheet metal into a more complex shape, a number of plastic instabilities may occur subsequently. A ‘plastic instability’ occurs when the zone of plastic deformation is suddenly confined to a smaller zone. The first plastic instability which usually occurs in forming processes is the onset of diffuse necking, in which plastic deformation is confined to a smaller zone, but with typical dimensions that are still in the order of magnitude of the part’s dimensions.

The original version of the chapter was revised: The erratum to this chapter is available at 10.1007/978-3-319-44070-5_8

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    EMFC is an acronym for “Extended Maximum Force Criterion” Mattiasson et al. (2006).

  2. 2.

    This requirement is always met when \( \bar{\upsigma } = \bar{\upsigma }\left( {\upsigma_{1} ,\upsigma_{2} } \right) \) is a strictly convex function.

References

  • Abbasi M, Ketabchi M, Izadkhah H, Fatmehsaria DH, Aghbash AN (2011) Identification of GTN model parameters by application of response surface methodology. Procedia Eng 10:415–420

    Article  Google Scholar 

  • Abbasi M, Shafaat MA, Ketabchi M, Haghshenas DF, Abbasi M (2012a) Application of the GTN model to predict the forming limit diagram of IF-Steel. J Mech Sci Technol 26:345–352

    Article  Google Scholar 

  • Abbasi M, Bagheri B, Ketabchi M, Haghshenas DF (2012b) Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Comp Mater Sci 53:368–376

    Article  Google Scholar 

  • Abbasi M, Ketabchi M, Ramazani A, Abbasi M, Prahl U (2012c) Investigation into the effects of weld zone and geometric discontinuity on the formability reduction of tailor welded blanks. Comp Mater Sci 59:158–164

    Article  Google Scholar 

  • Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminium alloys at elevated temperatures—Part 2: numerical modelling and experimental verification. Int J Plast 22:342–373

    Article  MATH  Google Scholar 

  • Abspoel M, Scholting ME, Droog JMM (2013) A new method for predicting forming limit curves from mechanical properties. J Mat Proc Technol 213:759–769

    Article  Google Scholar 

  • Achani D, Eriksson M, Hopperstad OS, Lademo OG (2007) Modelling of local necking and fracture in aluminium alloys. In: César de Sá JMA, Santos DA (eds) Proceedings of NUMIFORM 2007, Porto, Portugal

    Google Scholar 

  • Allwood JM, Shouler DR (2009) Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast 25:1207–1230

    Article  MATH  Google Scholar 

  • Aretz H (2004) Numerical restrictions of the modified maximum force criterion for prediction of forming limits in sheet metal forming. Model Simul Mater Sci Eng 12:677–692

    Article  Google Scholar 

  • Arrieux R, Boivin M (1987) Determination of the forming limit stress curve for anisotropic sheets. CIRP Ann 36:195–198

    Article  Google Scholar 

  • Assempour A, Nejadkhaki HK, Hashemi R (2010) Forming limit diagrams with the existence of through-thickness normal stress. Comp Mat Sci 48:504–508

    Article  Google Scholar 

  • Ayres RA, Wenner ML (1978) Strain and strain–rate hardening effect on punch stretching of 5182-O aluminium at elevated temperature. Sheet Metal Indus 55:1208–1216

    Google Scholar 

  • Azrin M, Backofen WA (1970) The deformation and failure of a biaxially stretched sheet. Metall Trans 1:2857–2861

    Google Scholar 

  • Balanethiram VS, Daehn GS (1994) Hyperplasticity-increased forming limits at high workpiece velocities. Scripta Metall 31:515–520

    Article  Google Scholar 

  • Banabic D (2006) Numerical prediction of FLC using the M-K-model combined with advanced material models. In: Hora P (ed) Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes, pp 37–42. ETH Zürich

    Google Scholar 

  • Banabic D (2010) A review on recent developments of Marciniak-Kuczynski model. Comp Meth Mat Sci 10:225–237

    Google Scholar 

  • Banabic D, Dannenmann E (2001) The influence of the yield locus shape on the limits strains. J Mat Proc Technol 109:9–12

    Article  Google Scholar 

  • Banabic D, Dörr RI (1995) Modelling of the sheet metal forming. Transilvania Press, Cluj Napoca (in Romanian)

    Google Scholar 

  • Banabic D, Soare S (2008) On the effect of the normal pressure upon the forming limit strains. In: Hora P (ed) Proceedings of the 7th international conference and workshop on numerical simulation of 3D sheet metal forming processes. interlaken, pp 199–204

    Google Scholar 

  • Banabic D, Soare S (2009) Assessment of the modified maximum force criterion for aluminium metallic sheets. Key Eng Mat 410–411:511–520

    Article  Google Scholar 

  • Banabic D, Bunge HJ, Pöhlandt K, Tekkaya AE (2000) Forming limits of sheet metal. In: Banabic D (ed) Formability of metallic materials. Springer, Berlin, pp 173–214

    Chapter  Google Scholar 

  • Banabic D, Aretz H, Comsa DS, Paraianu L (2005a) An improved analytical description of orthotropy in metallic sheets. Int J Plast 21:493–512

    Article  MATH  Google Scholar 

  • Banabic D, Aretz H, Paraianu L, Jurco P (2005b) Application of various FLD modelling approaches. Modell Simul Mater Sci Eng 13:759–769

    Article  Google Scholar 

  • Banabic D et al (2010a) Sheet metal forming processes. Springer, Heidelberg

    Book  Google Scholar 

  • Banabic D, Barlat F, Cazacu O, Kuwabara T (2010b) Advances in anisotropy and formability. Int J Mater Form 3:165–189

    Article  Google Scholar 

  • Banabic D, Lazarescu L, Paraianu L, Ciobanu I, Nicodim I, Comsa DS (2013) Development of a new procedure for the experimental determination of the forming limit curves. Ann CIRP 62:255–258

    Article  Google Scholar 

  • Banabic D, Lăzărescu L, Comşa DS (2015) Predictive performances of the Marciniak-Kuczynski model and Modified Maximum Force Criterion, Key Eng Mat 651–653:96–101

    Google Scholar 

  • Barlat F (1989) Forming limit diagrams—predictions based on some microstructural aspects of materials. In: Wagoner RH, Chan KS, Keeler SP (eds) Forming limit diagrams: concepts, methods, and applications. The Minerals, Metals and Materials Society, Warrendale, pp 275–302

    Google Scholar 

  • Barlat F, Lian J (1989) Plastic behaviour and stretchability of sheet metals. Part I: yield function for orthotropic sheets under plane stress conditions. Int J Plast 5:51–66

    Article  Google Scholar 

  • Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Choi SH, Pourboghrat F, Chu E, Lege DJ (2003) Plane stress yield function for aluminium alloy sheets. Part 1. Theory Int J Plast 19:1297–1319

    Article  MATH  Google Scholar 

  • Barlat F, Gracio JJ, Lee MG, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27:1309–1327

    Article  MATH  Google Scholar 

  • Bassani JL, Hutchinson JW, Neale KW (1979) On the prediction of necking in anisotropic sheets. In: Lippmann H (ed) Metal forming plasticity (IUTAM symposium). Springer, Germany, pp 1–13

    Chapter  Google Scholar 

  • Benzerga AA (2002) Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 50:1331–1362

    Article  MATH  Google Scholar 

  • Bird JE, Newman KE, Narasimhan K, Carlson JM (1987) Heterogeneous initiation and growth of sample-scale shear bands during necking of Al-Mg sheet. Acta Metall 35:2971–2982

    Article  Google Scholar 

  • Boudeau N (1995) Prediction of instability in local elasto-plastic instabilities (in French). Ph.D. thesis, University of Franche-Compte, Besancon

    Google Scholar 

  • Boudeau N, Gelin JC (1996) Post-processing of finite element results and prediction of the localized necking in sheet metal forming. J Mat Proc Technol 60:325–330

    Article  Google Scholar 

  • Bragard A (1989) The contribution of CRM to the FLD concept. In: Wagoner RH, Chan KS, Keeler SP (eds) Forming limit diagrams: concepts, methods, and applications. The minerals, metals and materials society, Warrendale, pp 9–19

    Google Scholar 

  • Bragard A, Baret JC, Bonnarens H (1972) A simplified method to determine the FLD onset of localized necking. Rap Cent Rech Metall 33:53–63

    Google Scholar 

  • Bridgman PW (1952) Studies in large plastic flow and fracture—with special emphasis on the effects of hydrostatic pressure. McGraw-Hill, New York

    MATH  Google Scholar 

  • Brozzo P, de Lucca B (1971) On the interpretation of the formability limits of metals sheets and their evaluation by means of elementary tests. In: Proceedings of ICSTIS, Tokyo, pp 966–988

    Google Scholar 

  • Brunet M, Morestin F (2001) Experimental and analytical necking studies of anisotropic sheet metals. J Mat Proc Technol 112:214–226

    Article  Google Scholar 

  • Brunet M, Morestin F, Mguil S (1996) The prediction of necking and failure in 3D. Sheet forming analysis using damage variable. J Phys IV 06:C6–473–C6-482

    Google Scholar 

  • Brunet M, Mguil S, Morestin F (1998) Analytical and experimental studies of necking in sheet metal forming processes. J Mat Proc Technol 80–81:40–46

    Article  Google Scholar 

  • Brunet M, Morestin F, Walter H (2004) Damage identification for anisotropic sheet metals using a non-local damage model. Int J Damage Mech 13:35–57

    Article  Google Scholar 

  • Brunet M, Morestin F, Walter-Leberre H (2005) Failure analysis of anisotropic sheet-metals using a non-local plastic damage model. J Mat Proc Technol 170:457–470

    Article  Google Scholar 

  • Carlson JM, Bird JE (1987) Development of sample-scale shear bands during necking of ferrite-austenite sheet. Acta Metall 35:1675–1701

    Article  Google Scholar 

  • Cayssials F (1998) A new method for predicting FLC. In: IDDRG congress meeting working group III, Brussel, pp 1–6

    Google Scholar 

  • Cayssials F (1999) The version of the ‘Cayssials’ FLC model. IDDRG Meeting Working Group III, Birmingham, pp 1–7

    Google Scholar 

  • Cayssials F, Lemoine X (2005) Predictive model for FLC (arcelor model) upgraded to UHSS steels. In: Boudeau N (ed) Proceedings of the IDDRG conference, Besancon, pp 17.1–17.8

    Google Scholar 

  • Charpentier PL (1975) Influence of punch curvature on the stretching limits of sheet steel. Metall Trans A 6A:1665–1669

    Article  Google Scholar 

  • Chen Z, Dong X (2009) The GTN damage model based on Hill’48 anisotropic yield criterion and its application in sheet metal forming. Comp Mat Sci 44:1013–1021

    Article  Google Scholar 

  • Chiba R, Takeuchi H, Kuroda M, Hakoyama T, Kuwabara T (2013) Theoretical and experimental study of forming limit strain of half-hard AA1100 aluminium alloy sheet. Comp Mat Sci 77:61–71

    Article  Google Scholar 

  • Chien WY, Pan J, Tang SC (2004) A combined necking and shear localization analysis for aluminium sheets under bi-axial stretching conditions. Int J Plast 20:1953–1981

    Article  MATH  Google Scholar 

  • Chu CC (1980) An analysis of localized necking in punch stretching. Int J Solids Struct 16:913–931

    Article  MATH  Google Scholar 

  • Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mat Technol 102:249–256

    Article  Google Scholar 

  • Ciumadin AS, Ersov BI, Ziaja D (1990) Effect of hydrostatic pressure on the forming limit deformation of sheet metals. Kuznecino-stampovocinoe proizvodsvo 9:241-24

    Google Scholar 

  • Considère M (1885) L’emploi du fer et l’acier dans les constructions. Ann des Ponts et Chausses 9:574–775

    Google Scholar 

  • D’Haeyer R, Bragard A (1975) Determination of the limiting strains at the onset of necking. Rap Cent Rech Metall 42:33–35

    Google Scholar 

  • Dell H, Gese H, Oberhofer G (2007) CrachFEM—A comprehensive approach for the prediction of sheet metal failure. In: César de Sá JMA, Santos AD (eds) Materials processing and design: modeling, simulation and applications NUMIFORM 2007, Porto, pp 165–170

    Google Scholar 

  • Dell H, Gese H, Oberhofer G (2008) Advanced yield loci and anisotropic hardening in the material model MF GENYLD+CRACHFEM. In: Hora P (ed) Proceedings of the 7th international conference and workshop on numerical simulation of 3D sheet metal forming processes, part 2. Interlaken, pp 49–54

    Google Scholar 

  • Demeri MY (1986) Strain analysis of the hemispherical stretch-bend test. J App Metalworking 4:183–187

    Article  Google Scholar 

  • Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

  • Dorn JE, Thomsen EG (1947) The ductility of metals under general conditions of stress and strain. Trans Am Soc Met 39:741–772

    Google Scholar 

  • Drewes EJ, Martini A (1976) Einfluss der Umformgeschwindigkeit auf die Grenzformaenderungen und die Formaenderungsverteilung von Feinblech. Archiv fuer Eissenhuettenwessen 47:167–172

    Article  Google Scholar 

  • Dudzinski D, Molinari A (1991) Perturbation analysis of thermoviscoplastic insta-bilities in biaxial loading. Int J Solids Struct 5:601–628

    Article  MATH  Google Scholar 

  • Duncan JL, Bird JE (1978) Die forming approximations for aluminium sheet. Sheet Metal Indus 51:1015–1025

    Google Scholar 

  • Emmens WC, van den Boogaard AH (2008) Tensile tests with bending: a mechanism for incremental forming. In: Proceedings of the 11th ESAFORM conference on material forming (ESAFORM 2008), Lyon, France

    Google Scholar 

  • Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25:2249–2268

    Article  Google Scholar 

  • Eyckens P, Van Bael A, Van Houtte P (2011) An extended Marciniak-Kuczynski model for anisotropic sheet subjected to monotonic strain paths with through-thickness shear. Int J Plast 27:1577–1597

    Article  MATH  Google Scholar 

  • Fukui Y, Nakanishi K (1988) Effects of sheet thickness on the in-plane stretch forming limit in an aluminium sheet. JSME Int J 31:679–685

    Google Scholar 

  • Geiger M, Merklein M (2003) Determination of forming limit diagrams—a new analysis method for characterization of materials formability. CIRP Ann Manuf Technol 52:213–216

    Article  Google Scholar 

  • Gensamer M (1946) Strength and ductility. Trans ASM 36:30–60

    Google Scholar 

  • Gerdooei M, Mollaei Dariani B (2009) Strain rate-dependent Forming Limit Diagrams for sheet metals. J Eng Manuf 222:1651–1659

    Article  Google Scholar 

  • Gese H, Dell H (2006) Numerical prediction of FLC with the program CRACH. In: Hora P (ed) Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes, ETH Zürich, pp 43–49

    Google Scholar 

  • Ghosh AK, Hecker SS (1975) Stretching limits in sheet metals: in-plane versus out-of-plane deformations. Metall Trans 5A:2161–2164

    Google Scholar 

  • Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mat Technol 116:290–297

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond JB, Perrin G, Devaux J (1997) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum Micromechanics. Springer, Vienna, pp 61–130

    Chapter  Google Scholar 

  • Gologanu M, Leblond JB, Perrin G, Devaux J (2001) Theoretical models for void coalescence in porous ductile solids—I: Coalescence “in layers”. Int J Sol Struct 38:5581–5594

    Article  MATH  Google Scholar 

  • Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in the press shop. Soc Auto Eng 680093:380–387

    Google Scholar 

  • Gotoh M, Chung T, Iwata N (1995) Effect of out-of-plane stress on the forming limit strains of sheet metals. JSME Int J 38:123–132

    Google Scholar 

  • Grange M, Besson J, Andrieu E (2000) An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets. Int J Fract 105:273–293

    Article  Google Scholar 

  • Grosnostajski J, Dolny A (1980) Determination of FLC by means of Marciniak punch. Mem Sci Rev Met 4:570–576

    Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth Part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  • Haberfield AB, Boyles MW (1973) Laboratory determined the FLC of sheet steel. Sheet Metal Indus 50:400–411

    Google Scholar 

  • Haddag B, Balan T, Abed-Meraim F (2007) Investigation of advanced strain-path dependent material models for sheet metal forming simulations. Int J Plast 23:951–979

    Article  MATH  Google Scholar 

  • Haddag B, Abed-Meraim F, Balan T (2008) Strain localization and damage prediction during sheet metal forming. In: ESAFORM 2008, Lyon, France

    Google Scholar 

  • Haddag B, Abed-Meraim F, Balan T (2009) Strain localization analysis using a large deformation anisotropic elastic–plastic model coupled with damage. Int J Plast 25:1970–1996

    Article  Google Scholar 

  • Hasek V (1978) Untersuchung und theoretische Beschreibung wichtiger Einflussgrossen auf das Grenzformaenderungschaubild. Blech, 25:213–220, 285–292, 493–499, 619–627

    Google Scholar 

  • Hashiguchi K, Protasov A (2004) Localized necking analysis by the subloading surface model with tangential-strain rate and anisotropy. Int J Plast 20:1909–1930

    Article  MATH  Google Scholar 

  • Havranek B (1977) The effect of mechanical properties on wrinkling in conical shells. J Mech Working Technol 1:115–129

    Article  Google Scholar 

  • He M, Li F, Wang Z (2011) Forming Limit Stress Diagram prediction of aluminium alloy 5052 based on GTN model parameters determined by in situ tensile test. Chin J Aeronaut 24:378–386

    Article  Google Scholar 

  • Hecker SS (1972) A simple FLC technique and results on some aluminium alloy. In: Proceedings of 7th IDDRG congress, Amsterdam, pp 51–71

    Google Scholar 

  • Hecker SS, Ghosh AK, Gegel HL (eds) (1978) Formability: analysis modeling and experimentation. Met Soc AIME, New York

    Google Scholar 

  • Held C, Dadrich J, Denninger R, Schleich R, Weidenmann KA, Liewald M (2009) Semi-empirische Berechnungsmethode zur Bestimmung des Grenzforma¨ nder-ungsdiagramms auf Basis mechanischer Kennwerte. Mat-wiss. u. Werkstofftech. 40:831–835

    Article  Google Scholar 

  • Hiam J, Lee A (1978) Factors influencing the FLC of sheet steel. Sheet Metal Indus 50:400–411

    Google Scholar 

  • Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Roy Soc Lond Proc A 193:281–297

    Article  MathSciNet  MATH  Google Scholar 

  • Hill R (1952) On discontinuous plastic states with special reference to localized necking in thin sheets. J Mech Phys Solid 1:19–30

    Article  MathSciNet  Google Scholar 

  • Hill R (1979) Theoretical plasticity of textured aggregates. Math. Proc. Cambridge Philosophical Soc. 85:179–191

    Google Scholar 

  • Hill R (1993) A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 15:19–25

    Google Scholar 

  • Holmberg S, Enquist B, Thilderkvist P (2004) Evaluation of sheet metal formability by tensile tests. J Mater Process Technol 145:72–83

    Article  Google Scholar 

  • Hora P (2006) Proceedings of FLC 2006 workshop. Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich

    Google Scholar 

  • Hora P (2014) Proceedings of FTF 2014 workshop. Time-dependent methods for the evaluation of FLC, ETH Zürich, Zürich

    Google Scholar 

  • Hora P, Tong L (1994) Prediction methods for ductile sheet metal failure using FE-simulation. In: da Rocha B (ed) Proceedings of IDDRG congress, Porto, pp 363-375

    Google Scholar 

  • Hora P, Tong L (2006) Numerical prediction of FLC using the enhanced modified maximum force criterion (eMMFC). In: Hora P (ed) Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich, pp 31–36

    Google Scholar 

  • Hora P, Tong L, Reissner J (2003) Mathematical prediction of FLC using macroscopic instability criteria combined with micro structural crack propagation models. In: Khan A (ed) Proceedings of plasticity 2003 conference, pp 364–366

    Google Scholar 

  • Hora P, Tong L, Berisha B (2013) Modified maximum force criterion, a model for the theoretical prediction of forming limit curves. Int J Mat Form 6:267–279

    Article  Google Scholar 

  • Hotz W, Timm J (2008) Experimental determination of forming limit curves (FLC). In: Hora P (ed) Numisheet 2008 (Proceedings of 7th international conference workshop on numerical simulation of 3D sheet metal forming processes), Interlaken, Switzerland, 1–5 September 2008, pp 271–278

    Google Scholar 

  • Hu XH, Jain M, Wilkinson DS, Mishra RK (2008) Micro-structure-based finite element analysis of strain localization behaviour in AA5754 aluminium sheet. Acta Mat 56:3187–3201

    Article  Google Scholar 

  • Huang HM, Pan J, Tang SC (2000) Failure prediction in anisotropic sheet metals under forming operation with consideration of rotating principal stretch directions. Int J Plast 16:611–633

    Article  MATH  Google Scholar 

  • Hutchinson RW, Neale KW (1978a) Sheet necking I. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming. Plenum Press, New York, pp 111–126

    Chapter  Google Scholar 

  • Hutchinson RW, Neale KW (1978b) Sheet necking II. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming. Plenum Press, New York, pp 127–153

    Chapter  Google Scholar 

  • Hutchinson RW, Neale KW (1978c) Sheet necking III. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming. Plenum Press, New York, pp 269–285

    Chapter  Google Scholar 

  • Inal K, Wu PD, Neale KW (2002a) Finite element analysis of localization in FCC polycrystalline sheets under plane stress tension. Int J Solids Struct 39:3469–3486

    Article  MATH  Google Scholar 

  • Inal K, Wu PD, Neale KW (2002b) Instability and localized deformation in polycrystalline solids under plane-strain tension. Int J Solids Struct 39:983–1002

    Article  MATH  Google Scholar 

  • Inal K, Neale KW, Aboutajeddine A (2005) Forming limit comparisons for FCC and BCC sheets. Int J Plast 21:1255–1266

    Article  MATH  Google Scholar 

  • International Standard ISO 12004-2 (2008) Metallic materials-sheet and strip determination of forming limit curves. Part 2: determination of forming limit curves in the laboratory. International organization for standardization, Geneva

    Google Scholar 

  • Ito K, Satoh K, Goya M, Yoshida T (2000) Prediction of limit strain in sheet metal forming processes by 3D analysis of localized necking. Int J Mech Sci 42:2233–2248

    Article  MATH  Google Scholar 

  • Janssens K, Lambert F, Vanrostenberghe S, Vermeulen M (2001) Statistical evaluation of the uncertainty of experimentally characterised forming limits of sheet steel. J Mater Process Technol 112:174–184

    Article  Google Scholar 

  • Jeong HY, Pan J (1995) A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization. Int J Solids Struct 32:3669–3691

    Article  MATH  Google Scholar 

  • Jouve D (2015) Analytic study of the onset of plastic necking instabilities during biaxial tension tests on metallic plates. Eur J Mech A Solids 50:59–69

    Article  Google Scholar 

  • Jurco P, Banabic D (2005) A user-frienldy program for calculating forming limit diagrams. In: Banabic D (ed) Proceedings of 8th ESAFORM conference material forming, Cluj Napoca, pp 423–427

    Google Scholar 

  • Jurco P, Banabic D (2005) A user-friendly program for analyzing the anisotropy and formability of sheet metals. In: Boudeau N (ed) Proceedings of IDDRG 2005 conference, Besancon, pp 26.1–26.8

    Google Scholar 

  • Kami A, Mollaei Dariani B, Sadough Vanini A, Comsa DS, Banabic D (2015) Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Process Technol 216:472–483

    Article  Google Scholar 

  • Karthik V, Comstock RJ, Hershberger DL, Wagoner RH (2002) Variability of sheet formability and formability testing. J Mater Process Technol 121:350–362

    Article  Google Scholar 

  • Keeler SP (1961) Plastic instability and fracture in sheet stretched over rigid punches. Ph.D. thesis, Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Keeler SP (1970) La formabilité est améliorée par pression hydrostatique. Machine Moderne, 65:43–45

    Google Scholar 

  • Keeler SP (1978) Forming limit criteria—sheets. In: Burke JJ, Weiss V (eds) Advances in deformation processing. Plenum Press, New York, pp 127–158

    Chapter  Google Scholar 

  • Keeler SP, Backofen WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:25–48

    Google Scholar 

  • Keeler SP, Brazier WG (1975) Relationship between laboratory material characterization and press-shop formability. In: Microalloying 75 (Proceedings of international symposium high-strength, low-alloy steels), Washington, DC, pp 517–530

    Google Scholar 

  • Kim JH, Lee MG, Kim D, Barlat F (2013) Numerical procedures for predicting localization in sheet metals using crystal plasticity. Comp Mat Sci 72:107–115

    Article  Google Scholar 

  • Kitting D, Ofenheimer A, Jain M, Pauli H, Rabler G (2008) Experimental characterisation of failure of stretch-bend steel sheets. In: Hora P (ed) Numisheet 2008 (Proceedings of 7th international confernece workshop on numerical simulation of 3D sheet metal forming processes), 1–5 September 2008, Interlaken, pp 315–320

    Google Scholar 

  • Kleemola HJ, Kumpulainen JO (1980) Factors influencing the FLD. Influence of sheet thickness. J Mater Process Technol 3:303–311

    Google Scholar 

  • Knockaert R, Chastel Y, Massoni E (2002) Forming limits prediction using rate-independent polycrystalline plasticity. Int J Plast 18:231–247

    Article  MATH  Google Scholar 

  • Koistinen DP, Wang NM (eds) (1978) Mechanics of sheet metal forming. Plenum Press, New York

    Google Scholar 

  • Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853

    Article  Google Scholar 

  • Kumpulainen JO, Ranta-Eskola AJ, Rintamaa RHO (1983) Effects of temperature on deep-drawing of sheet metals. Trans ASME J Eng Mat Technol 105:119–127

    Article  Google Scholar 

  • Lademo OG, Pedersen KO, Berstad T, Furu T, Hopperstad OS (2008) An experimental and numerical study on the formability of textured AlZnMg alloys. Eur J Mech A Solids 27:116–140

    Article  MATH  Google Scholar 

  • Lang L et al (2015) Investigation on the effect of through thickness normal stress on forming limit at elevated temperature by using modified M-K model. Int J Mat Form 8:2011–2228

    Google Scholar 

  • Lange E (1975) Die Bedeutung von Kennwerten und Verfahren zur Beurteilung des Umformverhaltens beim Tiefziehen von Feinblechen (I). Baender Blech Rohre 5:511–514

    Google Scholar 

  • Leblond JB, Mottet G (2008) A theoretical approach of strain localization within thin planar bands in porous ductile materials. Comptes-Rendus Mécanique 336:176–189

    Article  MATH  Google Scholar 

  • Leppin C, Li J, Daniel D (2008) application of a method to correct the effect of non-proportional strain paths on nakazima test based forming limit curves. In: Hora P (ed) Numisheet 2008 (Proceedings of 7th international confernece workshop on numerical simulation of 3D sheet metal forming processes), 1–5 September 2008, Interlaken, pp 217–221

    Google Scholar 

  • Levy BS (2002) The enhanced FLC effect—project team research report. The Auto/Steel Partnership, Southfield, MI. (http://www.a-sp.org)

  • Li D, Ghosh AK (2004) Biaxial warm forming behaviour of aluminium sheet alloys. J Mater Process Technol 145:281–293

    Article  Google Scholar 

  • Liao KC, Pan J, Tang SC (1997) Approximate yield criteria for anisotropic porous ductile sheet metals. Mech Mater 26:213–226

    Article  Google Scholar 

  • ‎Liu JG, Meng QY (2012) Left-side of the Forming Limit Diagram (FLD) under superimposed double-sided pressure. Adv Mat Res 472:653–656

    Google Scholar 

  • Liu J, Wang Z, Meng Q (2012) Numerical investigations on the influence of superimposed double-sided pressure on the formability of biaxially stretched AA6111-T4 sheet metal. J Mater Eng Perform 21:429–443

    Article  Google Scholar 

  • Liu J, Liu W, Xue W (2013) Forming Limit Diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets. Mater Des 46:112–120

    Article  Google Scholar 

  • Manopulo N, Hora P, Peters P, Gorji M, Barlat F (2015) An extended Modified Maximum Force Criterion for the prediction of localized necking under non-proportional loading. Int J Plast 75:189–203

    Article  Google Scholar 

  • Marciniak Z (1965) Stability of plastic shells under tension with kinematic boundary condition. Arch Mech Stosorwanej 17:577–592

    Google Scholar 

  • Marciniak Z (1968) Analysis of necking preceding fracture of sheet metal under tension. La Metallurgia Ital 8:701–709

    Google Scholar 

  • Marciniak Z (1977) Sheet metal forming limits. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming: material behaviour and deformation analysis. Plenum Press, New York, pp 215–235

    Google Scholar 

  • Marciniak Z, Kuczynski K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9:609–620

    Article  MATH  Google Scholar 

  • Marciniak Z, Kuczynski K, Pokora T (1973) Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int J Mech Sci 15:789–800

    Article  Google Scholar 

  • Matin PH, Smith LM (2005) Practical limitations to the influence of through-thickness normal stress on sheet metal formability. Int J Plast 21:671–690

    Article  MATH  Google Scholar 

  • Mattiasson K, Sigvant M, Larsson M (2006) Methods for forming limit prediction in ductile metal sheets. In: Santos AD, Barata da Rocha ADC (eds) Proceedings of IDDRG 2006 conference, Porto, pp 1–9

    Google Scholar 

  • Melander A (1983) A new model of the forming limit diagram applied to experiments on four copper-base alloys. Mater Sci Eng 58:63–88

    Article  Google Scholar 

  • Nakazima K, Kikuma T (1967) Forming limits under biaxial stretching of sheet metals (in Japanese). Testu-to Hagane 53:455–458

    Google Scholar 

  • Needleman A, Triantafyllidis N (1978) Void growth and local necking in biaxially stretched sheets. J Eng Mater Technol 100:164–169

    Article  Google Scholar 

  • Neil JC, Agnew SR (2009) Crystal plasticity-based forming limit prediction for non-cubic metals: application to Mg alloy AZ31B. Int J Plast 25:379–398

    Article  Google Scholar 

  • Nurcheshmeh M, Green DE (2014) The effect of normal stress on the formability of sheet metals under non-proportional loading. Int J Mech Sci 82:131–139

    Article  Google Scholar 

  • Padwal SB, Chaturvedi RC, Rao US (1992) Influence of superimposed hydrostatic tension on void growth in the neck of a metal sheet in biaxial stress fields (I, II). J Mater Proc Technol 32:91–107

    Article  Google Scholar 

  • Paraianu L, Dragos G, Bichis I, Comsa DS, Banabic D (2009) An improved version of the modified maximum force criterion (MMFC) used for predicting the localized necking in sheet metals. Proc Rom Acad 10:237–243

    Google Scholar 

  • Paraianu L, Dragos G, Bichis I, Comsa DS, Banabic D (2010) A new formulation of the modified maximum force criterion (MMFC). Int J Mat Form 3:243–246

    Article  Google Scholar 

  • Parsa MH, Ettehad M, Matin PH (2013) Forming limit diagram determination of Al 3105 sheets and Al 3105/Polypropylene/Al 3105 sandwich sheets using numerical calculations and experimental investigations. J Eng Mater Technol 135:031003

    Article  Google Scholar 

  • Percy JH (1980) The effect of strain rate on the FLD for sheet metal. Ann CIRP 29:151–152

    Article  Google Scholar 

  • Perrin G (1992) Contribution a l’étude théorique et numérique de la rupture ductile des métaux, Ph.D. thesis, Ecole Polytechnique, Palaiseau, France

    Google Scholar 

  • Ragab AR, Saleh C, Zaafarani NN (2002) Forming limit diagrams for kinematically hardened voided sheet metals. J Mater Process Technol 128:302–312

    Article  Google Scholar 

  • Ramazani A, Abbasi M, Prahl U, Bleck W (2012) Failure analysis of DP600 steel during the cross-die test. Comp Mater Sci 64:101–105

    Article  Google Scholar 

  • Ranta-Eskola AJ (1979) Use of the hydraulic bulge test in biaxial tensile testing. Int J Mech Sci 21:457–465

    Article  Google Scholar 

  • Ratchev P, Van Houtte P, Verlinden B, De Smet P, Neutjens P, Baartman R, Drent P (1994) Prediction of Forming Limit Diagrams of Al-Mg rolled sheets taking texture into account. Text Microstruct 22:219–231

    Article  Google Scholar 

  • Romano G, Rault D, Entringer M (1976) Utilization des courbes limites de formage et du mode de repartition des deformations comme critere de jugement de l’amptitude d’un acier extradoux a l’emboutissage. Mem Sci Rev Metal 73:372–383

    Google Scholar 

  • Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394

    Article  Google Scholar 

  • Saanouni K (2008) On the numerical prediction of the ductile fracture in metal forming. Eng Fract Mech 75:3545–3559

    Article  Google Scholar 

  • Sang H, Nishikawa Y (1983) A plane strain tensile apparatus. J Met 35:30–33

    Google Scholar 

  • Shi MF, Gerdeen JC (1991) Effect of strain gradient and curvature on Forming Limit Diagrams for anisotropic sheets. J Mat Shaping Technol 9:253–268

    Article  Google Scholar 

  • Signorelli JW, Bertinetti MA, Turner PA (2009) Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model. Int J Plast 25:1–25

    Article  MATH  Google Scholar 

  • Simha CHM, Gholipour J, Bardelcik A, Worswick MJ (2007a) Prediction of necking in tubular hydroforming using an extended stress-based FLC. ASME J Eng. Mater Technol 129:136–147

    Google Scholar 

  • Simha CHM, Grantab R, Worswick MJ (2007b) Computational analysis of stress-based forming limit curves. Int J Solids Struct 44:8663–8684

    Article  MATH  Google Scholar 

  • Smith LM et al (2003) Influence of transverse normal stress on sheet metal formability. Int J Plast 19:1567–1583

    Article  MATH  Google Scholar 

  • Soare S, Barlat F (2014) About the influence of hydrostatic pressure on the yielding and flow of metallic polycrystals. J Mech Phys Solids 67:87–99

    Article  MathSciNet  MATH  Google Scholar 

  • Son HS, Kim YS (2003) Prediction of forming limits for anisotropic sheets containing prolate ellipsoidal voids. Int J Mech Sci 45:1625–1643

    Article  MATH  Google Scholar 

  • Spitzig WA, Richmond O (1984) The effect of pressure on the flow stress of metals. Acta Metall 32:457–463

    Article  Google Scholar 

  • Steninger J, Melander A (1982) The relation between bendability, tensile properties and particle structure of low carbon steel. Scand J Metall 11:55–71

    Google Scholar 

  • Storen S, Rice JR (1975) Localized necking in thin sheets. J Mech Phys Solids 23:421–441

    Article  MATH  Google Scholar 

  • Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18

    Article  Google Scholar 

  • Tadano Y, Yoshida K, Kuroda M (2013) Plastic flow localization analysis of heterogeneous materials using homogenization-based finite element method. Int J Mech Sci 72:63–74

    Google Scholar 

  • Tharrett MR, Stoughton TB (2003) Stretch-bend forming limits of 1008 Ak steel. SAE SP (2003-01-1157), pp 123–129

    Google Scholar 

  • Tharrett MR, Stoughton TB (2003b) Stretch-bend forming limits of 1008 Ak steel, 70/30 Brass, and 6010 Aluminium. In: Khan AS, Kazmi R, Zhou J (eds) Dislocations, plasticity and metal forming (The tenth international symposium plasticity current applications), Quebec, Canada, 7–11 July 2003. Neat Press, USA, pp 199–201

    Google Scholar 

  • Thomason PF (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33:1087–1095

    Article  Google Scholar 

  • Timothy SP (1989) A modified technique to measure formability in plane-strain tension. In: Wagoner RH, Chan KS, Keeler SP (eds) Forming limit diagrams: concepts, methods, and applications. The Minerals, Metals and Materials Society, Warrendale, pp 21–36

    Google Scholar 

  • Tisza M, Kovács ZP (2012) New methods for predicting the formability of sheet metals. Prod Process Syst 5:45–54

    Google Scholar 

  • Tóth LS, Hirsch J, Van Houtte P (1996) On the role of texture development in the forming limits of sheet metals. Int J Mech Sci 38:1117–1126

    Article  Google Scholar 

  • Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Article  Google Scholar 

  • Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Uko DK, Sowerby R, Duncan JL (1977) Strain distribution in the bending-under-tension test. CIM Bull 70:127–134

    Google Scholar 

  • Uthaisangsuk V, Prahl U, Münstermann S, Bleck W (2008) Experimental and numerical failure criterion for formability prediction in sheet metal forming. Comp Mat Sci 43:43–50

    Article  Google Scholar 

  • Uthaisangsuk V, Prahl U, Bleck W (2009) Characterisation of formability behaviour of multiphase steels by micromechanical modelling. Int J Fract 157:55–69

    Article  MATH  Google Scholar 

  • Uthaisangsuk V, Prahl U, Bleck W (2011) Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng Fract Mech 78:469–486

    Article  Google Scholar 

  • van den Boogaard AH (2002) Thermally enhanced forming of aluminium sheet. Modeling and experiments. Ph.D. thesis, University of Twente

    Google Scholar 

  • Vegter H, ten Horn CHLJ, Abspoel M (2008) Modeling of the forming limit curve by MK analysis and FE simulations. In: Hora P (ed) Numisheet 2008 (Proceedings of 7th international conference workshop on numerical simulation of 3D sheet metal forming processes), 1–5 September 2008, Interlaken, pp 187–192

    Google Scholar 

  • Volk W, Illig R, Kupfer H, Wahlen A, Hora P, Kessler L, Hotz W (2008) Benchmark 1—virtual forming limit curves. In: Hora P (ed) Numisheet 2008 (Proceedings of 7th international conference workshop on numerical simulation of 3D sheet metal forming processes), 1–5 September 2008, Interlaken, pp 3–9

    Google Scholar 

  • Wagoner RH, Chan KS, Keeler SP (eds) (1989) Forming limit diagrams: concepts, methods and applications. TMS, Warrendale

    Google Scholar 

  • Wang H, Wu PD, Boyle KP, Neale KW (2011) On crystal plasticity formability analysis for magnesium alloy sheets. Int J Solids Struct 48:1000–1010

    Article  MATH  Google Scholar 

  • Wang R, Chen Z, Li Y, Dong C (2013) Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model. Int J Min Met Mater 20:1198–1207

    Article  Google Scholar 

  • Wang H, Wu PD, Lee SY, Wang J, Neale KW (2015) Numerical study of the effects of shear deformation and super-imposed hydrostatic pressure on the formability of AZ31B sheet at room temperature. Int J Mech Sci 92:70–79

    Article  Google Scholar 

  • Wu PD, MacEwen SR, Lloyd DJ, Neale KW (2004a) Effect of cube texture on sheet metal formability. Mat Sci Eng A 364:182–187

    Article  Google Scholar 

  • Wu PD, MacEwen SR, Lloyd DJ, Neale KW (2004b) A mesoscopic approach for predicting sheet metal formability. Modell Simul Mater Sci Eng 12:511

    Article  Google Scholar 

  • Wu PD, Embury JD, Lloyd DJ, Huang Y, Neale KW (2009) Effects of superimposed hydrostatic pressure on sheet metal formability. Int J Plast 25:1711–1725

    Article  MATH  Google Scholar 

  • Xu ZT, Peng LF, Fu MW, Lai XM (2015) Size effect affected formability of sheet metals in micro/meso scale plastic deformation: experiment and modeling. Int J Plast 68:34–54

    Article  Google Scholar 

  • Xue L (2010) Localization conditions and diffused necking for damage plastic solids. Eng Fract Mech 77:1275–1297

    Article  Google Scholar 

  • Yoon JS, Noh HG, Song WJ, Kang BS, Kim J (2013) Comparison of experimental and numerical failure criterion for formability prediction of automotive part. Adv Mater Res 658:354–360

    Article  Google Scholar 

  • Yoshida K (2014) Effects of grain-scale heterogeneity on surface roughness and sheet metal necking. Int J Mech Sci 83:48–56

    Article  Google Scholar 

  • Yoshida K, Kuroda M (2012) Numerical investigation on a key factor in superior stretchability of face-centered cubic polycrystalline sheets. Int J Mech Sci 58:47–56

    Article  Google Scholar 

  • Yoshida K, Ishizaka T, Kuroda M, Ikawa S (2007) The effects of texture on formability of aluminium alloy sheets. Acta Mater 55:4499–4506

    Article  Google Scholar 

  • Yoshida K, Tadano Y, Kuroda M (2009) Improvement in formability of aluminium alloy sheet by enhancing geometrical hardening. Comp Mat Scis 46:459–468

    Article  Google Scholar 

  • Zadpoor AA, Sinke J, Benedictus R (2009) Formability prediction of high strength aluminium sheets. Int J Plast 25:2269–2297

    Article  Google Scholar 

  • Zhang F, Chen J, Chen J, Lu J, Liu G, Yuan S (2012) Overview on constitutive modeling for hydroforming with the existence of through-thickness normal stress. J Mater Process Technol 212:2228–2237

    Article  Google Scholar 

  • Zhang F, Chen J, Chen J, Zhu X (2014a) Forming limit model evaluation for anisotropic sheet metals under through-thickness normal stress. Int J Mech Sci 89:40–46

    Article  Google Scholar 

  • Zhang F, Chen J, Chen J (2014b) Effect of through-thickness normal stress on forming limits under Yld 2003 yield criterion and M-K model. Int J Mech Sci 89:92–100

    Article  Google Scholar 

  • Zhou Y, Neale KW (1995) Predictions of forming limit diagrams using a rate-sensitive crystal plasticity. Int J Mech Sci 37:1–20

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorel Banabic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banabic, D., Comsa, DS., Eyckens, P., Kami, A., Gologanu, M. (2016). Advanced Models for the Prediction of Forming Limit Curves. In: Banabic, D. (eds) Multiscale Modelling in Sheet Metal Forming. ESAFORM Bookseries on Material Forming. Springer, Cham. https://doi.org/10.1007/978-3-319-44070-5_5

Download citation

Publish with us

Policies and ethics