Skip to main content

LCA of Forest Products—Challenges and Solutions

  • Chapter
  • First Online:
Life Cycle Assessment of Forest Products

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

This chapter provides an extensive walkthrough of the important challenges encountered when carrying out life cycle assessment (LCA) of forest products, and proposes some solutions to these challenges, with examples from the scientific literature and technical reports. The topics include: modelling future and/or uncertain product systems, handling multi-functionality (i.e., allocation problems), inventory analysis and impact assessment (carbon flow modelling, assessing climate impact, biodiversity loss, water cycle disturbances and energy use), managing trade-offs and connecting the LCA work to global environmental challenges, and integrating LCA work in the R&D of new products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Swedish forest biomass stocks doubled in 1926–2008 (Swedish University of Agricultural Sciences 2011).

  2. 2.

    The functional traits of a species are “morpho-physiophenological traits which impact fitness indirectly via their effects on growth, reproduction and survival” (Violle et al. 2007, p. 1).

  3. 3.

    The inclusion of environmental considerations in product development is sometimes referred to as “ecodesign”, “sustainable product design”, “design for the environment”, “design for life cycle”, “environmental product development” or similar. The definitions of, and the distinctions between, these terms are not further elaborated on in the present book.

References

  • Agostini A, Giuntilo J, Boulamanti A (2013) Carbon accounting of forest bioenergy: conclusions and recommendations from a critical literature review. JRC Technical Reports, Report EUR 25354 EN. http://iet.jrc.ec.europa.eu/bf-ca/sites/bf-ca/files/files/documents/eur25354en_online-final.pdf. Accessed Dec 2014

  • Ardente F, Beccali M, Cellura M, Mistretta M (2008) Building energy performance: a LCA case study of kenaf-fibres insulation board. Energy Build 40:1–10

    Article  Google Scholar 

  • Arvidsson R, Fransson K, Fröling M, Svanström M, Molander S (2012) Energy use indicators in energy and life cycle assessments of biofuels: review and recommendations. J Clean Prod 31:54–61

    Article  CAS  Google Scholar 

  • Arvidsson R, Baumann H, Hildenbrand J (2015a) On the scientific justification of the use of working hours, child labour and property rights in social life cycle assessment: three topical reviews. Int J Life Cycle Assess 20(2), 161–173

    Google Scholar 

  • Arvidsson R, Ngyen D, Svanström M (2015b). Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes. Environ Sci Technol 49(11), 6881–6890

    Google Scholar 

  • Arvidsson R, Svanström M (2016) A framework for energy use indicators and reporting in life cycle assessment. Integr Environ Assess Manag. doi:10.1002/ieam.1735

    Google Scholar 

  • Askham C, Gade AL, Hanssen OJ (2012) Combining REACH, environmental and economic performance indicators for strategic sustainable product development. J Clean Prod 35:71–78

    Article  Google Scholar 

  • Baldassarri C, Mathieux F, Ardente F, Wehmann C, Deese K (2016) Integration of environmental aspects into R&D inter-organizational projects management: application of a life cycle-based method to the development of innovative windows. J Clean Prod 112(4):3388–3401

    Article  Google Scholar 

  • Bayart J-B, Bulle C, Margni M, Vince F, Deschenes L, Aoustin E (2009) Operational characterisation method and factors for a new midpoint impact category: freshwater deprivation for human uses. In: Proceedings of the SETAC Europe 19th annual meeting, Gothenburg, Sweden

    Google Scholar 

  • Bayart J-B, Worbe S, Grimaud J, Aoustin E (2014) The water impact index: a simplified single-indicator approach for water footprinting. Int J Life Cycle Assess 19:1336–1344

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2010) Water footprinting: how to address water use in life cycle assessment? Sustainability 2(4):919–944

    Article  Google Scholar 

  • Berger M, Finkbeiner M (2012) Methodological challenges in volumetric and impact-oriented water footprints. J Ind Ecol 17(1):79–89

    Article  Google Scholar 

  • Bhattacharyya A, Mazumdar A, Roy PK, Sarkar A (2013) Life cycle assessment of carbon flow through harvested wood products. Ecol Environ Conserv 19(4):1195–1209

    Google Scholar 

  • Bjørn A, Diamond M, Owsianiak M, Verzat B, Hauschild MZ (2015) Strengthening the link between life cycle assessment and indicators for absolute sustainability to support development within planetary boundaries. Environ Sci Technol 20(7):1005–1018

    Google Scholar 

  • Blengini GA (2009) Life cycle of buildings, demolition and recycling potential: a case study in Turin, Italy. Build Environ 44:319–330

    Article  Google Scholar 

  • Börjeson L, Höjer M, Dreborg K-H, Ekvall T, Finnveden G (2005) Towards a user’s guide to scenarios—a report on scenario types and scenario techniques. Environmental strategies research, Department of Urban studies, Royal Institute of Technology, Stockholm

    Google Scholar 

  • Börjeson L, Höjer M, Dreborg K-H, Ekvall T, Finnveden G (2006) Scenario types and techniques: towards a user’s guide. Futures 38(7):723–739

    Article  Google Scholar 

  • Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190

    Article  Google Scholar 

  • Bosch-Sijtsema P (2007) The impact of individual expectations and expectation conflicts on virtual teams. Group Organ Manage 32(3):358–388

    Article  Google Scholar 

  • Bouhaya L, Le Roy R, Feraille-Fresnet A (2009) Simplified environmental study on innovative bridge structures. Environ Sci Technol 43:2066–2071

    Article  CAS  Google Scholar 

  • Boulay A-M, Motoshita M, Pfister S, Bulle C, Muñoz I, Franceschini H, Margni M (2015a) Analysis of water use impact assessment methods (part A): evaluation of modelling choices based on quantitative comparison of scarcity and human health indicators. Int J Life Cycle Assess 20(1):139–160

    Article  Google Scholar 

  • Boulay A-M, Bare J, De Camillis C, Doll P, Gassert F, Gerten D et al (2015b) Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int J Life Cycle Assess 20(5):577–583

    Article  CAS  Google Scholar 

  • Brandão M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18(6):1243–1252

    Article  Google Scholar 

  • Brandão M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 35(6):2323–2336

    Article  CAS  Google Scholar 

  • Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Vedel Jørgensen S et al (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18:230–240

    Article  CAS  Google Scholar 

  • Brander M (2015) Response to “Attributional life cycle assessment: is a land-use baseline necessary?”—appreciation, renouncement, and further discussion. Int J Life Cycle Assess. doi:10.1007/s11367-015-0974-8

    Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7:339–348

    Article  Google Scholar 

  • Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 26:1133–1140

    Article  Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agr Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Buyle M, Braet J, Audenaert A (2013) Life cycle assessment in the construction sector: a review. Renew Sustain Energy Rev 26:379–388

    Article  Google Scholar 

  • Byggeth S, Broman G, Robért K-H (2007) A method for sustainable product development based on a modular system of guiding questions. J Clean Prod 15:1–11

    Article  Google Scholar 

  • Cai Z, Laughlin R, Stevens R (2001) Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere 42:113–121

    Article  CAS  Google Scholar 

  • Cellura M, Longo S, Mistretta M (2011) Sensitivity analysis to quantify uncertainty in life cycle assessment: the case study of an Italian tile. Renew Sustain Energy Rev 15:4697–4705

    Article  Google Scholar 

  • Chang D, Lee CKM, Chen C-H (2014) Review of life cycle assessment towards sustainable product development. J Clean Prod 83:48–60

    Article  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH, Ulgiati S (2011) Influence of allocation methods on the environmental performance of biorefinery products—a case study. Resour Conserv Recycl 55:1070–1077

    Article  Google Scholar 

  • Cherubini F, Bright RM, Strømman AH (2012) Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics. Environ Res Lett 7(4). doi:10.1088/1748-9326/7/4/045902

    Google Scholar 

  • Cherubini F, Guest G, Strømman AH (2013) Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches. J Environ Manage 129:292–301

    Article  CAS  Google Scholar 

  • Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Ind 46:138–148

    Article  Google Scholar 

  • Clancy G (2014) Assessing sustainability and guiding development towards more sustainable products. Thesis for the degree of doctor of philosophy, Chalmers University of Technology, Chalmers Reproservice, Gothenburg, Sweden. http://publications.lib.chalmers.se/publication/197988. Accessed Nov 2014

  • Clancy G, Fröling M, Svanström M (2013) Insights from guiding material development towards more sustainable products. Int J Sustain Des 2(2):149–166

    Google Scholar 

  • Collado-Ruiz D, Ostad-Ahmad-Ghorabi H (2013) Estimating environmental behaviour without performing a life cycle assessment. J Ind Ecol 17(1):31–42

    Article  Google Scholar 

  • Colodel MC, Kupfer T, Barthel L-P, Albrecht S (2009) R&D decision support by parallel assessment of economic, ecological and social impact—adipic acid from renewable resources versus adipic acid from crude oil. Ecol Econ 68(6):1599–1604

    Article  Google Scholar 

  • Costa PM, Wilson C (2000) An equivalence factor between CO2 avoided emissions and sequestration—description and applications in forestry. Mitig Adapt Strat Glob Change 5:51–60

    Article  Google Scholar 

  • Cuéllar-Franca RM, Azapagic A (2012) Environmental impacts of the UK residential sector: life cycle assessment of houses. Build Environ 54:86–99

    Article  Google Scholar 

  • Curran M, de Baan L, de Schryver A, van Zelm R, Hellweg S, Koellner S et al (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79

    Article  CAS  Google Scholar 

  • de Baan L, Alkemede R, Koellner T (2012) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230

    Article  Google Scholar 

  • de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47:9281–9290

    Article  CAS  Google Scholar 

  • De Souza DM, Flynn DFB, DeClerck F, Rosenbaum RK, de Melo Lisboa H, Koellner T (2013) Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int J Life Cycle Assess 18(6):1231–1242

    Article  Google Scholar 

  • De Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Change Biol 21:32–47

    Article  Google Scholar 

  • Devanathan S, Ramanujan D, Bernstein WZ, Zhao F, Ramani K (2010) Integration of sustainability into early design through the function impact matrix. J Mech Des 132

    Google Scholar 

  • Dixit MK, Fernández-Solís JL, Lavy S, Culp CH (2012) Need for an embodied energy measurement protocol for buildings: a review paper. Renew Sustain Energy Rev 16:3730–3743

    Article  Google Scholar 

  • Dornburg V, Marland G (2008) Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum. Mitig Adapt Strat Glob Change 13(3):211–217

    Article  Google Scholar 

  • Du G, Mohammed S, Pettersson L, Karoumi R (2014) Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. Int J Life Cycle Assess 19:1948–1968

    Article  Google Scholar 

  • EC (2009a) Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0088:0113:EN:PDF. Accessed Jan 2015

  • EC (2009b) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=en. Accessed Jan 2015

  • EC (2010) International reference life cycle data system (ILCD) handbook—general guide for the life cycle assessment—detailed guidance. Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • EC (2013) Commission recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013H0179&from=EN. Accessed Feb 2015

  • European Environment Agency (1995) CORINE land cover. European Environment Agency. http://www.eea.europa.eu/publications/COR0-landcover. Accessed Jan 2015

  • European Forest Institute (2014) ToSIA—tool for sustainable impact assessment. http://tosia.efi.int/. Accessed Jan 2015

  • European Space Agency (2011) GlobCover. http://due.esrin.esa.int/globcover. Accessed Jan 2015

  • Fazeni K, Lindorfer J, Prammer H (2014) Methodological advancements in life cycle process design: a preliminary outlook. Resour Conserv Recycl 92:66–77

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S et al (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643–653

    Article  Google Scholar 

  • Fleischer G, Gerner K, Kunst H, Licthenvort K, Rebitzer G (2001) A semi-quantitative method for the impact assessment of emissions within a simplified life cycle assessment. Int J Life Cycle Assess 6(3):149–156

    Article  Google Scholar 

  • Frijia S, Guhathakurta S, Williams E (2011) Functional unit, technological dynamics, and scaling properties for the life cycle of residencies. Environ Sci Technol 46:1782–1788

    Article  CAS  Google Scholar 

  • Frischknecht R, Büsser S, Krewitt W (2009a) Environmental assessment of future technologies: how to trim LCA to fit this goal. Int J Life Cycle Assess 14:584–588

    Article  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009b) The ecological scarcity method—eco-factors 2006. A method for impact assessment in LCA. Environmental studies no. 0906. Federal Office for the Environment, Bern

    Google Scholar 

  • FSC (2016) https://ic.fsc.org. Accessed Jan 2016

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P et al (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4. doi:10.1038/ncomms2328

  • Garcia R, Freire A (2014) Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration. J Clean Prod 66:199–200

    Article  CAS  Google Scholar 

  • Geyer R, Lindner J, Stoms D, Davis F, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use, part 2: impact assessment. Int J Life Cycle Assess 15:692–703

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2000) The eco-indicator 99—a damage-oriented method for life cycle impact assessment, 2nd edn. PRé Consultants, Amersfoort

    Google Scholar 

  • Grant A, Ries R, Kibert C (2014) Life cycle assessment and service life prediction: a case study of building envelope materials. J Ind Ecol 18(2):187–200

    Article  CAS  Google Scholar 

  • Guest G, Strømman AH (2014) Climate change impacts due to biogenic carbon: addressing the issue of attribution using two metrics with very different outcomes. J Sustain Forest 33(3):298–326

    Article  Google Scholar 

  • Guest G, Cherubini F, Strømman AH (2013) Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. J Ind Ecol 17(1):20–30

    Article  CAS  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gunn JS, Ganz D, Keeton W (2012) Biogenic vs. geologic carbon emissions and forest biomass energy production. GCB Bioenergy 4:239–242

    Article  CAS  Google Scholar 

  • Habert G, Arribe D, Dehove T, Espinasse L, Le Roy R (2012) Reducing environmental impact by increasing the strength of concrete: quantification of the improvement to concrete bridges. J Clean Prod 35:250–262

    Article  Google Scholar 

  • Haines-Young R, Potschin M (2013) Common international classification of ecosystem services (CICES): consultation on version 4, August–December 2013. EEA Framework Contract No EEA/IEA/09/003. http://cices.eu/wp-content/uploads/2012/07/CICES-V43_Revised-Final_Report_29012013.pdf. Accessed Dec2014

  • Heijungs R, Guinée JB (2007) Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manage 27:997–1005

    Article  Google Scholar 

  • Heijungs R, Huppes G, Guinée J (2009) A scientific framework for LCA. Deliverable (D15) of work package 2 (WP2) CALCAS project. http://www.leidenuniv.nl/cml/ssp/publications/calcas_report_d15.pdf. Accessed Dec 2014

  • Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of carbon cycles in life cycle assessment—a review. GCB Bioenergy 5(5):475–486

    Article  CAS  Google Scholar 

  • Hertwich EG, Hammitt JK (2001) A decision-analytic framework for impact assessment. Part 2: midpoints, endpoints, and criteria for method development. Int J Life Cycle Assess 6(1):5–12

    Article  CAS  Google Scholar 

  • Hetherington AC, Borrion AL, Griffiths OG, McManus MC (2014) Use of LCA as a development tool within early research: challenges and issues across different sectors. Int J Life Cycle Assess 19:130–143

    Article  Google Scholar 

  • Heuvelmans G, Muys G, Feyen J (2005) Extending the life cycle methodology to cover impacts of land use systems on the freshwater balance. Int J Life Cycle Assess 10:113–119

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manage 21(1):35–48

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Water Footprint Network, Enschede

    Google Scholar 

  • Hooper DU, Adair EC, Cardinale BR, Byrnes JEK, Hungate BA, Matulich KL et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht K, Hendriks HWM, Hungerbühler K, Hendriks AJ (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44(6):2189–2196

    Article  CAS  Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Working group I contribution to the 5th assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. http://www.ipcc.ch/report/ar5/wg1/. Accessed Oct 2014

  • ISO (2006a) 14040: Environmental management—life cycle assessment—requirements and guidelines. International Organisation for Standardisation

    Google Scholar 

  • ISO (2006b) 14044: Environmental management—life cycle assessment – principles and framework. International Organisation for Standardisation

    Google Scholar 

  • ISO (2014) 14046: Environmental management—water footprint—principles, requirements and guidelines. International Organisation for Standardisation

    Google Scholar 

  • Johnson E (2009) Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 29:165–168

    Article  Google Scholar 

  • Jørgensen SV, Hauschild MZ, Nielsen PH (2014) Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP). Int J Life Cycle Assess 19(4):919–930

    Article  CAS  Google Scholar 

  • Karlsson H, Börjesson P, Hansson P-H, Ahlgren S (2014) Ethanol production in biorefineries using lignocellulosic feedstock—GHG performance, energy balance and implications of life cycle calculation methodology. J Clean Prod 83:420–427

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) Temporary carbon sequestration cannot prevent climate change. Mitig Adapt Strat Glob Change 11(5–6):1151–1164

    Article  Google Scholar 

  • Klein D, Wolf C, Schulz C, Blaschke-Weber G (2015) 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodological proposal for the LCA of forest production. Int J Life Cycle Assess 20:556–575

    Article  CAS  Google Scholar 

  • Koellner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8:293–311

    Article  Google Scholar 

  • Koellner T, Geyer R (2013) Global land use impact assessment on biodiversity. Int J Life Cycle Assess 18(6):1185–1187

    Article  Google Scholar 

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environmental. Int J Life Cycle Assess 13(1):32–48

    Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Goedkoop M et al (2013a) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 18(6):1203–1215

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Goedkoop M et al (2013b) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202

    Article  Google Scholar 

  • Koponen K, Soimakallio S (2015) Foregone carbon sequestration due to land occupation—the case of agro-bioenergy in Finland. Int J Life Cycle Assess 20(11):1544–1556

    Article  CAS  Google Scholar 

  • Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18(3):701–721

    Article  CAS  Google Scholar 

  • Kunnari E, Valkama J, Keskinen M, Mansikkamäki P (2009) Environmental evaluation of new technology: printed electronics case study. J Clean Prod 17:791–799

    Article  Google Scholar 

  • Kyläkorpi L, Rydgren B, Ellegård A, Miliander S, Grusell E (2005) The biotope method 2005: a method to assess the impact of land use on biodiversity. http://www.vattenfall.com/en/file/2005TheBiotopeMethod_8459811.pdf. Accessed Jan 2013

  • Launiainen S, Futter MN, Ellison D, Clarke N, Finér L, Högbom L et al (2014) Is the water footprint an appropriate tool for forestry and forest products: the Fennoscandian case. Ambio 43(2):244–256

    Article  Google Scholar 

  • Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44:3169–3174

    Article  CAS  Google Scholar 

  • Lindeijer E (2000) Biodiversity and life support impacts of land use in LCA. J Clean Prod 8:313–319

    Article  Google Scholar 

  • Lindner JP, Niblick B, Eberle U, Bos U, Schmincke E, Schwarz S, et al. (2014) Proposal of a unified biodiversity impact assessment method. In: Proceedings of the 9th international conference LCA of food, San Francisco, USA

    Google Scholar 

  • Lindqvist M, Palme U, Lindner JP (2015) A comparison of two different biodiversity assessment methods in LCA—a case study of Swedish spruce forest. Int J Life Cycle Assess. doi:10.1007/s11367-015-1012-6

    Google Scholar 

  • Liski J, Korotkov AV, Prins CFL, Karjalainen T, Victor DG, Kauppi PE (2003) Increased carbon sink in temporal and boreal forests. Clim Change 61:89–99

    Article  CAS  Google Scholar 

  • Lundie S, Peters G, Beavis P (2004) Life cycle assessment for sustainable metropolitan water systems planning—options for ecological sustainability. Environ Sci Technol 38:3465–3473

    Article  CAS  Google Scholar 

  • Luo L, Van Der Voet E, Huppes G, Udo De Haes HA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14(6):529–539

    Article  CAS  Google Scholar 

  • MA (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DC

    Google Scholar 

  • Manmek S, Kaebernick H, Kara S (2010) Simplified environmental impact drivers for product life cycle. Int J Sustain Manuf 2(1):30–65

    Article  Google Scholar 

  • Mathiesen BV, Münster M, Fruergaard T (2009) Uncertainties related to the identification of the marginal technology in consequential life cycle assessments. J Clean Prod 17:1331–1338

    Article  Google Scholar 

  • Mattsson B, Cederberg C, Blix L (2000) Agricultural land use in life cycle assessment (LCA): case studies of three vegetable oil crops. J Clean Prod 8:283–292

    Article  Google Scholar 

  • McAloone TC, Bey N (2009) Environmental improvement through product development: a guide. Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity: proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22–31

    Google Scholar 

  • Michelsen O, Cherubini F, Strømman AH (2012) Impact assessment of biodiversity and carbon pools from land use and land use change in life cycle assessment, exemplified with forestry operations in Norway. J Ind Ecol 16(2):231–242

    Article  Google Scholar 

  • Milà i Canals L, Romanyà J, Cowell SJ (2007) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in life cycle assessment (LCA). J Clean Prod 15:1426–1440

    Article  Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use in LCA: part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Motoshita M, Itsubo N, Inaba A (2008). Development of impact assessment method on health damages of undernourishment related to agricultural water scarcity. In: Proceedings of the 8th international conference on EcoBalance, Tokyo, Japan

    Google Scholar 

  • Motoshita M, Itsubo N, Inaba A, Aoustin E (2009) Development of damage assessment model for infectious diseases arising from domestic water consumption. In: Proceedings of the SETAC Europe: 19th annual meeting, Gothenburg, Sweden

    Google Scholar 

  • Muys B, Quijano JG (2002) A new method for land use impact assessment in LCA based on the ecosystem exergy concept. http://www.biw.kuleuven.be/lbh/lbnl/forecoman/pdf/land%20use%20method4.pdf. Accessed Mar 2015

  • Nielsen PH, Wenzel H (2002) Integration of environmental aspects in product development: a stepwise procedure based on quantitative life cycle assessment. J Clean Prod 10:247–257

    Article  Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755–767

    Article  Google Scholar 

  • Ny H (2009) Strategic life-cycle modeling and simulation for sustainable product development. Blekinge Institute of Technology Doctoral Dissertation Series No. 2009:02. http://www.bth.se/fou/forskinfo.nsf/all/d218ba0b67bf3802c12575b400295b6b/$file/Ny_diss.pdf. Accessed Feb 2015

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Ortiz O, Pasqualino JC, Castells F (2010) The environmental impact of the construction phase: an application to composite walls from a life cycle perspective. Resour Conserv Recycl 54:832–840

    Article  Google Scholar 

  • Othman MR, Repke J-U, Wozny G, Huang Y (2010) A modular approach to sustainability assessment and decision support in chemical process design. Ind Eng Chem Res 49:7870–7881

    Article  CAS  Google Scholar 

  • Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M et al (2013) Critical aspects in the life cycle assessment (LCA) of bio-based materials—reviewing methodologies and deriving recommendations. Resour Conserv Recycl 73:211–228

    Article  Google Scholar 

  • PEFC (2016) http://www.pefc.org. Accessed January 2016

  • Pelletier N, Ardente F, Brandão M, De Camillis C, Pennington D (2015) Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible? Int J Life Cycle Assess 20(1):74–86

    Article  Google Scholar 

  • Perez-Garcia J, Lippke B, Comnick J, Manriquez C (2005) An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci 37:140–148

    CAS  Google Scholar 

  • Persson C, Fröling M, Svanström M (2006) Life cycle assessment of the district heat distribution system, part 3: use phase and overall discussion. Int J Life Cycle Assess 11:437–446

    Article  CAS  Google Scholar 

  • Pesonen H-L, Ekvall T, Fleischer G, Huppes G, Jahn C, Klos SZ et al (2000) Framework for scenario development in LCA. Int J Life Cycle Assess 5:21–30

    Article  Google Scholar 

  • Peters GM, Wiedemann SG, Rowley HV, Tucker RV (2010) Accounting for water use in Australian red meat production. Int J Life Cycle Assess 15(3):311–320

    Article  CAS  Google Scholar 

  • Peters GM, Blackburn NJ, Armedio M (2013) Environmental assessment of air to water machines—triangulation to manage scope uncertainty. Int J Life Cycle Assess 18:1149–1157

    Article  Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

    Article  CAS  Google Scholar 

  • Pinsonnault A, Lesage P, Levasseur A, Samson R (2014) Temporal differentiation of background systems in LCA: relevance of adding temporal information in LCI databases. Int J Life Cycle Assess 19:1843–1853

    Article  Google Scholar 

  • Quinteiro P, Cláudia Dias A, Silva M, Ridoutt BG, Arroja L (2015) A contribution to the environmental impact assessment of green water flows. J Clean Prod. doi:10.1016/j.jclepro.2015.01.022

    Google Scholar 

  • Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment, part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  • Rebitzer G (2005) Enhancing the application efficiency of life cycle assessment for industrial uses. Thesis no 3307, École polytechnique fédérale de Lausanne, Switzerland. http://infoscience.epfl.ch/record/52216/files/EPFL_TH3307.pdf. Accessed Jan 2015

  • Repo A, Tuomi M, Liski J (2011) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy 3(2):107–115

    Article  CAS  Google Scholar 

  • Ridoutt BG (2011) Development and application of water footprint metric for agricultural products and the food industry. In: Finkbeiner M (ed) Towards life cycle sustainability management. Springer, Dordrecht, pp 183–192

    Google Scholar 

  • Ridoutt BG, Pfister S (2013) A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int J Life Cycle Assess 18:204–207

    Article  CAS  Google Scholar 

  • Ridoutt BG, Sanguansri P, Nolan M, Marks N (2012) Meat consumption and water scarcity: beware of generalizations. J Clean Prod 28:127–133

    Article  Google Scholar 

  • Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sustainability indicators: beyond the weighted sum. J Environ Manage 111:24–33

    Article  Google Scholar 

  • Røyne F, Peñaloza D, Sandin G, Berlin J, Svanström M (2016) Climate impact assessment in life cycle assessments of forest products: implications of method choice for results and decision-making. J Clean Prod 116:90–99

    Article  Google Scholar 

  • Saad R, Margni M, Koellner T, Wittstock B, Deschênes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16:198–211

    Article  Google Scholar 

  • Sandén BA, Harvey S (2008) System analysis for energy transition: a mapping of methodologies, co-operation and critical issues in energy systems studies at Chalmers. Report CEC 2008:2, Chalmers University of Technology, Gothenburg, Sweden

    Google Scholar 

  • Sandin G, Peters GM, Svanström M (2013) Moving down the cause-effect chain of water and land use impacts: an LCA case study of textile fibres. Resour Conserv Recycl 17:104–113

    Article  Google Scholar 

  • Sandin G, Peters GM, Svanström M (2014a) Life cycle assessment of construction materials: the influence of assumptions in end-of-life modelling. Int J Life Cycle Assess 19(4):723–731

    Article  CAS  Google Scholar 

  • Sandin G, Clancy G, Heimersson S, Peters GM, Svanström M, ten Hoeve M (2014b) Making the most of LCA in inter-organisational R&D projects. J Clean Prod 70:97–104

    Article  Google Scholar 

  • Sandin G, Røyne F, Berlin H, Peters GM, Svanström M (2015a) Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod 93:213–221

    Article  Google Scholar 

  • Sandin G, Peñaloza D, Røyne F, Svanström M, Staffas L (2015b) The method’s influence on climate impact assessment of biofuels and other uses of forest biomass. Report No 2015:10, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden. www.f3centre.se. Accessed Jan 2016

  • Sandin G, Peters GM, Svanström M (2015c) Using the planetary boundaries framework for setting impact-reduction targets in LCA contexts. Int J Life Cycle Assess 20(12):1684–1700

    Article  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929–1942

    Article  Google Scholar 

  • Schmidt JH, Weidema BP, Brandão M (2015) A framework for modelling indirect land use changes in life cycle assessments. J Clean Prod. doi:10.1016/j.jclepro.2015.03.013

    Google Scholar 

  • Schulze E-D, Körner C, Law BE, Haberl H, Luyssaert S (2012) Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 4:611–616

    Article  CAS  Google Scholar 

  • Schwaiger H, Bird N (2010) Integration of albedo effects caused by land use change into the climate balance: should we still account in greenhouse gas units? Forest Ecol Manage 260:278–286

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emission from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • Singh A, Berghorn G, Joshi S, Syal M (2011) Review of life-cycle assessment applications in building construction. J Arch Eng 17:15–23

    Article  Google Scholar 

  • Sjølie HK, Solberg B (2011) Greenhouse gas emission impacts of use of Norwegian wood pellets: a sensitivity analysis. Environ Sci Policy 14(8):1028–1040

    Article  CAS  Google Scholar 

  • Soimakallio S, Cowie A, Brandão M, Finnveden G, Ekvall T, Erlandsson M et al (2015) Attributional life cycle assessment: is a land-use baseline necessary. Int J Life Cycle Assess 20(10):1364–1375

    Article  Google Scholar 

  • Spielmann M, Scholz RW, Tietje O, de Haan P (2005) Scenario modelling in prospective LCA of transport systems: application of formative scenario analysis. Int J Life Cycle Assess 10(5):325–335

    Article  Google Scholar 

  • Spracklen DV, Bonn B, Carslaw KS (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc Lond A: Math Phys Eng Sci 366(1885):4613–4626

    Article  CAS  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM et al (2015) Planetary boundaries: guiding human development on a changing planet. Science. doi:10.1126/science.1259855

    Google Scholar 

  • Stephenson AL, Dupree P, Scott SA, Dennis JS (2010) The environmental and economic sustainability of potential bioethanol from willow in the UK. Bioresour Technol 101(24):9612–9623

    Article  CAS  Google Scholar 

  • Sterman JD (1991) A skeptic’s guide to computer models. In: Barney GO, Kreutzer WB, Garrett MJ (eds) Managing a nation: the microcomputer software catalog, 2nd edn. Westview Press, Boulder

    Google Scholar 

  • Swank WT, Vose JM, Elliot KJ (2001) Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. Forest Ecol Manage 143:163–178

    Article  Google Scholar 

  • Swedish University of Agricultural Sciences (2011). Forestry statistics 2011. http://www.slu.se/Global/externwebben/nl-fak/mark-och-miljo/Markinventeringen/Dokument%20MI/Skogsdata2011_temadelen%20om%20markvegetation.pdf. Accessed Jan 2015

  • Tambouratzis T, Karalekas D, Moustakas N (2014) A methodological study for optimizing material selection in sustainable product design. J Ind Ecol 18(4):508–516

    Article  CAS  Google Scholar 

  • Teixeira RFM, de Souza DM, Curran MP, Antón A, Michelsen O, Milà i Canals L (2015) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contribution. J Clean Prod. doi:10.1016/j.jclepro.2015.07.118

    Google Scholar 

  • Ter-Mikaelian MT, Colombo SJ, Chen J (2015) The burning question: does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. J. Forest 113(1):57–68

    Article  Google Scholar 

  • Thompson I (2011) Biodiversity, ecosystem thresholds, resilience and forest degradation. Unasylva 238(62). http://www.fao.org/docrep/015/i2560e/i2560e05.pdf. Accessed Dec 2014

  • Thormark C (2002) A low energy building in a life cycle—its embodied energy, energy need for operation and recycling potential. Build Environ 37:429–435

    Article  Google Scholar 

  • Tillman AM (2000) Significance of decision-making for LCA methodology. Environ Impact Assess Rev 20(1):113–123

    Article  Google Scholar 

  • Tuomisto HI, Hodge IH, Riordan P, Macdonald DW (2012) Exploring a safe operating approach to weighting in life cycle impact assessment—a case study of organic, conventional and integrated farming systems. J Clean Prod 37:147–153

    Article  Google Scholar 

  • Van Zelm R, Rombouts M, Snepvangers J, Huijbregts MAJ, Aoustin E (2009). Characterization factors for groundwater extraction based on plant species occurrence in the Netherlands. In: Proceedings of the SETAC Europe, 19th annual meeting, Gothenburg, Sweden

    Google Scholar 

  • Verbeeck G, Hens H (2007) Life cycle optimization of extremely low energy dwellings. J Build Phys 31(2):143–178

    Article  Google Scholar 

  • Vinodh S, Rathod G (2010) Integration of ECQFD and LCA for sustainable product design. J Clean Prod 18(8):832–844

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I et al (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Vogtländer J, Van Der Velden N, Van Der Lugt P (2014) Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo. Int J Life Cycle Assess 19(1):13–23

    Article  CAS  Google Scholar 

  • Waage SA (2007) Re-considering product design: a practical “road-map” for integration of sustainability issues. J Clean Prod 15:638–649

    Article  Google Scholar 

  • Weidema B (2014) Has ISO 14040/44 failed its role as a standard for life cycle assessment? J Ind Ecol 18:324–326

    Article  Google Scholar 

  • Weidema BP, Lindeijer E (2001) Physical impacts of land use in product life cycle assessment. Final report of the EURENVIRON 1296 LCAGAPS sub-project on land use. Department of Manufacturing Engineering and Management, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  • Wrage N, van Groeningen JW, Oenema O, Baggs EM (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Spectrom 19:3298–3306

    Article  CAS  Google Scholar 

  • WULCA (2014) Consensual indicator project. http://www.wulca-waterlca.org/project.html. Accessed Jan 2016

  • Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918

    Article  Google Scholar 

  • Zanchi G, Pena N, Bird N (2012) Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy 4(6):761–772

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Sandin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Sandin, G., Peters, G.M., Svanström, M. (2016). LCA of Forest Products—Challenges and Solutions. In: Life Cycle Assessment of Forest Products. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-44027-9_4

Download citation

Publish with us

Policies and ethics