Skip to main content

Strengths and Weaknesses of Forest Products

  • Chapter
  • First Online:
Life Cycle Assessment of Forest Products

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 687 Accesses

Abstract

This chapter introduces some of the strengths and weaknesses of forest products, for example relating to renewability, biodegradability, climate change, biodiversity loss and water cycle disturbances, indirect land use and land use change. It is explained how the complexities surrounding these topics are key reasons for why environmental assessments are needed to ensure that forest products replacing non-forest products actually reduce environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini A, Giuntilo J, Boulamanti A (2013) Carbon accounting of forest bioenergy: conclusions and recommendations from a critical literature review. JRC Technical Reports, Report EUR 25354 EN. http://iet.jrc.ec.europa.eu/bf-ca/sites/bf-ca/files/files/documents/eur25354en_online-final.pdf. Accessed Dec 2014

  • Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P (2013) LCA of biorefineries—identification of key issues and methodological recommendations. Report No 2013:25, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden. http://www.f3centre.se/sites/default/files/f3_report_2013-25_lca_biorefineries_140710.pdf. Accessed Dec 2014

  • Bergman R, Puettmann M, Taylor A, Skog KE (2014) The carbon impacts of wood products. Forest Prod J 64(7–8):220–231

    Article  Google Scholar 

  • Berndes G, Ahlgren S, Börjesson P, Cowie A (2013) Bioenergy and land use change—state of the art. Wiley Interdisc Rev Energy Environ 2:282–303

    Article  Google Scholar 

  • Buyle M, Braet J, Audenaert A (2013) Life cycle assessment in the construction sector: a review. Renew Sustain Energy Rev 26:379–388

    Article  Google Scholar 

  • Coyne R (2005) Wicked problems revisited. Des Stud 26:5–17

    Article  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852

    Article  CAS  Google Scholar 

  • EU (2007) Brussels European Council 8/9 March 2007: presidency conclusions, 7224/1/07 REV 1. http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%207224%202007%20REV%201. Accessed Jan 2015

  • Frøiland Jensen JE, Pipatti R (2002) CH4 emissions from solid waste disposal. In: Background papers—IPCC expert meetings on good practice guidance and uncertainty management in national greenhouse gas inventories. Institute for Global Environmental Strategies, Japan

    Google Scholar 

  • Handler RM, Shonnard DR, Lautala P, Abbas D, Srivastava A (2014) Environmental impacts of roundwood supply chain options in Michigan: life-cycle assessment of harvest and transport stages. J Clean Prod 76:64–73

    Article  Google Scholar 

  • Hertel T, Alla G, Andrew J, O’Hare M, Plevin R, Kammen D (2010) Global land use and greenhouse gas emissions impacts of U.S. maize ethanol: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  • Kane ES, Vogel JG (2009) Patterns of total ecosystem carbon storage with changes in soil temperature in boreal black spruce forests. Ecosystems 12(2):322–335

    Article  CAS  Google Scholar 

  • Kauppi PE, Rautiainen A, Korhonen KT, Lehtonen A (2010) Changing stock of biomass carbon in a boreal forest over 93 years. Forest Ecol Manage 259(7):1239–1244

    Article  Google Scholar 

  • Kløverpris JH, Mueller S (2013) Baseline time accounting: considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels. Int J Life Cycle Assess 18:319–330

    Article  Google Scholar 

  • Kurz WA, Stintson G, Rampley G (2008) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B Biol Sci 363:2261–2269

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA 108(9):3465–3472

    Article  CAS  Google Scholar 

  • Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100(16):3792–3798

    Article  CAS  Google Scholar 

  • Mantau U, Saal U, Prins K, Steierer F, Lindner M, Verkerk H et al (2010) Real potential for changes in growth and use of EU forests. EUwood Final report, Hamburg

    Google Scholar 

  • Miner RA, Abt RC, Bowyer JL, Buford MA, Malmsheimer RW, O´Laughlin J et al (2014) Forest carbon accounting considerations in US bioenergy policy. J Forest 112(6):591–606

    Google Scholar 

  • Nabuurs G-J, Pussinen A, van Brusselen J, Schelhaas MJ (2007) Future harvesting pressure on European forests. Eur J Forest Res 126:391–400

    Article  Google Scholar 

  • Nabuurs G-J, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nature Clim Change 3:792–796

    Article  CAS  Google Scholar 

  • Narodoslawsky M, Niederl-Schmidinger A, Halasz L (2008) Utilising renewable resources economically: new challenges and chances for process development. J Clean Prod 16:164–170

    Article  Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) The greenhouse gas emissions from market-mediated land use change are uncertain, but potentially much greater than previously estimated. Environ Sci Technol 44:8015–8021

    Article  CAS  Google Scholar 

  • Rockström J, Falkenmark M, Lannerstad M, Karlberg L (2012) The planetary water drama: dual task of feeding humanity and curbing climate change. Geophys Res, Lett 39

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emission from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • Taylor A (2013) Wood is better. Wood Fiber Sci 45(1):1–2

    Google Scholar 

  • Werner F, Richter K (2007) Wood building products in comparative LCA: a literature review. Int J Life Cycle Assess 12(7):470–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Sandin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Sandin, G., Peters, G.M., Svanström, M. (2016). Strengths and Weaknesses of Forest Products. In: Life Cycle Assessment of Forest Products. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-44027-9_2

Download citation

Publish with us

Policies and ethics