Skip to main content

Emergency Surgery After Previous Radiation Therapy

  • Chapter
  • First Online:
Surgical Emergencies in the Cancer Patient

Abstract

In the treatment of cancer, radiation therapy continues to be a valuable and widely used tool. Although radiation therapy can be a very effective component in both curative and palliative treatments, radiation therapy does have potential downsides, including the possibility of increased risk of surgical complications. For surgeons evaluating previously irradiated patients, particularly in the case of emergency surgery, it is both important and prudent to understand the issues surrounding radiation therapy, especially considering the increasing complexity of radiation therapy treatments.

This chapter explores the challenges presented in emergency surgery of cancer patients who have previously received radiation therapy and investigates many aspects of this issue. Some basics of radiation therapy terminology and biology are discussed. Fundamental normal tissue effects of radiation exposure are described, with a view to understanding the potential for surgical complications related to radiation therapy. Finally, strategies are explored to minimize the risk of surgical complications in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat Oncol. 2012;7:162.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sullivan MC, Roman SA, Sosa JA. Emergency surgery in patients who have undergone recent radiotherapy is associated with increased complications and mortality: review of 536 patients. World J Surg. 2012;36(1):31–8. doi:10.1007/s00268-011-1230-4.

    Article  PubMed  Google Scholar 

  3. Tibbs M. Wound healing following radiation therapy: a review. Radiother Oncol. 1997;42(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  4. Hopewell JW. The skin: its structure and response to ionizing radiation. Int J Radiat Oncol Biol Phys. 1990;57:751–73.

    Article  CAS  Google Scholar 

  5. Hall EJ. Radiobiology for the radiologist. Philadelphia: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  6. Habel D. Surgical complications in irradiated patients. Arch Otolaryngol. 1967;82:382–6.

    Article  Google Scholar 

  7. Reinhold H, Fajardo L, Hopewell J. The vascular system. Adv Radiat Biol. 1990;14:177–226.

    Article  Google Scholar 

  8. Hom DB, Unger GM, Pernell KJ, et al. Improving surgical wound healing with basic fibroblast growth factor after radiation. Laryngoscope. 2005;115(3):312–422.

    Article  Google Scholar 

  9. Robson M, Smith P. Topical use of growth factors to enhance healing. In: Falanga V, editor. Cutaneous wound healing. London: Martin Dunitz; 2001. p. 379–98.

    Google Scholar 

  10. Nugent M, Iozzo R. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32:115–20.

    Article  CAS  PubMed  Google Scholar 

  11. Stone HB, Coleman CN, Anscher MS, et al. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4(9):529–36.

    Article  CAS  PubMed  Google Scholar 

  12. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679–94.

    Article  CAS  PubMed  Google Scholar 

  13. Dorr W, Kummermehr J. Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses. Radiother Oncol. 1990;7:249–59.

    Article  Google Scholar 

  14. Bhanja P, Saha S, Kabarriti R, et al. Protective role of R-spondin 1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 2009;4:11. ID e8014.

    Article  Google Scholar 

  15. de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signaling. Nature. 2011;476:293–7.

    Article  PubMed  Google Scholar 

  16. Torres S, Thim L, Milliat F, et al. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys. 2007;69:1563–71.

    Article  CAS  PubMed  Google Scholar 

  17. Paris F, Fuks Z, Kang A, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293:293–7.

    Article  CAS  PubMed  Google Scholar 

  18. Abderrahmani R, François A, Buard V, et al. Effects of pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 in radiation-induced intestinal injury. Int J Radiat Oncol Biol Phys. 2009;74:942–8.

    Article  CAS  PubMed  Google Scholar 

  19. Polistena A, Johnson LB, Ohiami-Masseron S, et al. Local radiotherapy of exposed murine small bowel: apoptosis and inflammation. BMC Surg. 2008;8:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Okunieff P, Meter M, Wang J, et al. In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiat Res. 1998;150:204–11.

    Article  CAS  PubMed  Google Scholar 

  21. Stinson SF, Delaney TF, Greenberg J, et al. Acute and long-term effects on limb function of combined modality limb sparing therapy for extremity soft tissue sarcoma. Int J Radiat Oncol Biol Phys. 1991;21:1493–9.

    Article  CAS  PubMed  Google Scholar 

  22. Karasek K, Contine LS, Rosier R. Sarcoma therapy: functional outcome and relationship to treatment parameters. Int J Radiat Oncol Biol Phys. 1992;24:651–6.

    Article  CAS  PubMed  Google Scholar 

  23. Denekamp J, Rojas A. Cell kinetics and radiation pathology. Experientia. 1989;45:33–41.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenblatt JD, Yong D, Perry DJ. Satellite cell activity is required for hypertrophy of overloaded adult rat skeletal muscle. Muscle Nerve. 1994;17:608–13.

    Article  CAS  PubMed  Google Scholar 

  25. Olive M, Blanco R, Rivera R, et al. Cell death induced by gamma irradiation of developing skeletal muscle. J Anat. 1995;187(Pt 1):127–32.

    PubMed  PubMed Central  Google Scholar 

  26. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clin Genet. 2000;57:16–25.

    Article  CAS  PubMed  Google Scholar 

  27. Adams GR, Caiozzo VJ, Haddad F, et al. Cellular and molecular responses to increase skeletal muscle loading after irradiation. Am J Physiol Cell Physiol. 2002;283:C1182–95.

    Article  CAS  PubMed  Google Scholar 

  28. Lefaix JL, Delanian S, Leplat JJ, et al. Radiation induced cutaneomuscular fibrosis: major therapeutic efficacy of liposomal Cu/Zn superoxide dismutase. Bull Cancer. 1993;80:799–807.

    CAS  PubMed  Google Scholar 

  29. Zeman W, Soloma M. Effects of radiation on striated muscle. In: Berdijs CC, editor. Pathology of irradiation. Baltimore: Williams & Wilkins; 1971. p. p185–216.

    Google Scholar 

  30. Gerstner HB, Lewis RB, Richey EO. Early effects of high intensity X-radiation on skeletal muscle. J Gen Physiol. 1954;37:445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jurdana M, Cemazar M, Pegan K, et al. Effect of ionizing radiation on human skeletal muscle precursor cells. Radiol Oncol. 2013;47:376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siemionow M, Mee J, Porvasnik S, et al. Effects of 8-Gy radiation on the microcirculation of muscle flaps in the rat. Plast Reconstr Surg. 1999;104:1372–8.

    Article  CAS  PubMed  Google Scholar 

  33. Quinian JG, Lyden SP, Cambier DM, et al. Radiation inhibition of mdx mouse muscle regeneration: dose and age factors. Muscle Nerve. 1995;18:201–6.

    Article  Google Scholar 

  34. Hardee JP, Puppa MJ, Fix DK, et al. The effect of radiation dose on mouse skeletal muscle remodeling. Radiol Oncol. 2014;48:247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gangloff H, Hug O. The effects of ionizing radiation on the nervous system. Adv Biol Med Phys. 1965;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zeman W, Ordy JM, Samorajski T. Modification of acute irradiation effect of cerebellar neurons of mice by actinomycin D. Exp Neurol. 1968;21:52–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sato M, Augustin G, Stahl W. The effects of ionizing radiation on spinal cord neurons. In: Haley JF, Snider RS, editors. Response of the nervous system to ionizing radiation. New York: Academic Press; 1962. p. 57–68.

    Google Scholar 

  38. Gangloff H. Hippocampal spike activity following low doses of radiation. In: Haley JF, Snider RS, editors. Response of the nervous system to ionizing radiation. Boston: Little Brown; 1964. p. 574–86.

    Google Scholar 

  39. Congdon CC. The destructive effect of radiation on lymphatic tissue. Cancer Res. 1966;26:1211–20.

    CAS  PubMed  Google Scholar 

  40. Avraham T, Yan A, Zampell JC. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-{beta}1 mediated tissue fibrosis. Am J Physiol Cell Physiol. 2010;299:C589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mortimer P, Simmons RH, Rezvani M, et al. Time-related changes in lymphatic clearance in pig skin after a single dose of 18 Gy of X rays. Br J Radiol. 1991;64:1140–6.

    Article  CAS  PubMed  Google Scholar 

  42. Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA, Chaudhry A, Mehrara BJ. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295(5):H2113–27.

    Article  CAS  PubMed  Google Scholar 

  43. Baker A, Semple JL, Moore S. Lymphatic function is impaired following irradiation of a single lymph node. Lymphat Res Biol. 2014;12:76–88.

    Article  CAS  PubMed  Google Scholar 

  44. McMahon AM, Carati CJ, Piller NB, et al. The effects of radiation on the contractile activity of guinea pig mesenteric lymphatics. Lymphotology. 1994;27:193–200.

    CAS  Google Scholar 

  45. Cui Y, Wilder J, Rietz C, et al. Radiation-induced impairment in lung lymphatic vasculature. Lymphat Res Biol. 2014;12:238–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang CY, Nguyen DH, Wu CW, et al. Developing a lower limb lymphedema animal model with combined lymphadenectomy and low-dose radiation. Plast Reconstr Surg Glob Open. 2014;2:121–6.

    Article  Google Scholar 

  47. Vegesna V, Withers HR, Holly FE, McBride WH. The effect of local and systemic irradiation on impairment of wound healing in mice. Radiat Res. 1993;135:431–3.

    Article  CAS  PubMed  Google Scholar 

  48. Gorodetsky R, McBride WH, Withers HR. Radiat Res. 1988;115:135–44.

    Article  Google Scholar 

  49. Wiernik G, Patterson TJ, Berry RJ. The effect of fractionated dose-patterns of X-radiation on the survival of experimental skin flaps in the pig. Br J Radiol. 1974;47(558):343–5.

    Article  CAS  PubMed  Google Scholar 

  50. Griffin AM, Dickie CI, Catton CN, et al. The influence of time interval between preoperative radiation and surgical resection on the development of wound healing complications in extremity soft tissue sarcoma. Ann Surg Oncol. 2015;22:2824–30.

    Article  PubMed  Google Scholar 

  51. Ang K, Jiang G, Feng Y, et al. Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys. 2001;50(4):1013–20. http://dx.doi.org/10.1016/S0360-3016(01)01599-1.

    Article  CAS  PubMed  Google Scholar 

  52. Mason K, Withers R, Chiang C. Late effects of radiation on the lumbar spinal cord of guinea pigs: re-treatment tolerance. Int J Radiat Oncol Biol Phys. 1993;26(4):643–8. 10.1016/0360-3016(93)90282-Z.

    Article  CAS  PubMed  Google Scholar 

  53. Grillo H, Potsaid M. Studies in wound healing. IV. Retardation of contraction by local x-irradiation, and observations relating to the origin of fibroblasts in repair. Ann Surg. 1961;154:741–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hart GB, Mainous EG. The treatment of radiation necrosis with hyperbaric oxygen (OHP). Cancer. 1976;37:2580–5.

    Article  CAS  PubMed  Google Scholar 

  55. Mainous EG, Boyne PJ. Hyperbaric oxygen in total rehabilitation of patients with mandibular osteoradionecrosis. Int J Oral Surg. 1974;3:297–301.

    Article  Google Scholar 

  56. Marx RE, Ames JR. The use of hyperbaric oxygen therapy in bony reconstruction of the irradiated and tissue-deficient patient. J Oral Maxillofac Surg. 1982;40:412–20.

    Article  CAS  PubMed  Google Scholar 

  57. Marx RE, Johnson RP, Kline SN. Prevention of osteoradionecrosis: a randomized prospective clinical trial of hyperbaric oxygen versus penicillin. J Am Dent Assoc. 1985;111:49–54.

    Article  CAS  PubMed  Google Scholar 

  58. Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334(25):1642–8.

    Article  CAS  PubMed  Google Scholar 

  59. Delanian S, Chatel C, Porcher R, et al. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): a phase II trial. Int J Radiat Oncol Biol Phys. 2011;80(3):832–9.

    Article  PubMed  Google Scholar 

  60. Delanian S, Lefaix JL. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol. 2007;17:99–107.

    Article  PubMed  Google Scholar 

  61. Delanian S, Porcher R, Balla-Mekias S, et al. Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol regression of superficial radiation-induced fibrosis. J Clin Oncol. 2003;21(13):2545–50.

    Article  CAS  PubMed  Google Scholar 

  62. Hamama S, Gilbert-Sirieix M, Delanian S. Radiation-induced enteropathy: molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF–beta1 cascade inhibition. Radiother Oncol. 2012;105(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  63. Koh WJ, Stelzer KJ, Peterson LM, et al. Effect of pentoxifylline on radiation-induced lung and skin toxicity in rats. Int J Radiat Oncol Biol Phys. 1995;31(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  64. O’Sullivan B, Levin W. Late radiation-related fibrosis: pathogenesis, manifestations, and current management. Semin Radiat Oncol. 2003;13(3):274–89.

    Article  PubMed  Google Scholar 

  65. Khanna S, Roy S, Bagchi D, et al. Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radic Biol Med. 2001;31(1):38–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy E. Abendroth M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abendroth, R.E., Yang, L. (2017). Emergency Surgery After Previous Radiation Therapy. In: Fong, Y., Kauffmann, R., Marcinkowski, E., Singh, G., Schoellhammer, H. (eds) Surgical Emergencies in the Cancer Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-44025-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44025-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44023-1

  • Online ISBN: 978-3-319-44025-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics