Advertisement

Surgical Considerations and Emergencies in the Cancer Patient Receiving Immunotherapy

  • Joseph Chao
  • Marwan Fakih
Chapter

Abstract

The increasing clinical use of immunotherapies among various malignancies, predominated by immune checkpoint inhibitors, has increased the potential for unique toxicities a practicing surgeon should be aware of. These manifestations are predominated by gastrointestinal toxicities due to immune cell infiltration which mimic autoimmune conditions such as inflammatory bowel disease. Patients may present with diarrhea, gastrointestinal bleeding, and abdominal pain typically managed with immunosuppressive strategies such as high-dose corticosteroids. However, cases refractory to such measures or the rare cases presenting with up-front gastrointestinal perforation require urgent surgical intervention. The goal of this chapter is to provide an overview of immunotherapeutic strategies, with a focus on immune checkpoint inhibitors, and their respective gastrointestinal toxicities reported in the literature, and provide guidelines to assist the practicing surgeon in this rapidly growing field.

Keywords

Immune checkpoint inhibitors CTLA4 PD-1 PD-L1 Colitis Intestinal perforation 

References

  1. 1.
    Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3:1–48.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Thomas L. Delayed hypersensitivity in health and disease. In: Lawrence HS, editor. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper; 1959. p. 529–32.Google Scholar
  4. 4.
    Priestman TJ. Interferons and cancer therapy. J Pathol. 1983;141:287–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Kirkwood JM, Ernstoff MS. Interferons in the treatment of human cancer. J Clin Oncol. 1984;2:336–52.PubMedGoogle Scholar
  6. 6.
    Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709.CrossRefPubMedGoogle Scholar
  7. 7.
    Mertelsmann R, Welte K. Human interleukin 2: molecular biology, physiology and clinical possibilities. Immunobiology. 1986;172:400–19.CrossRefPubMedGoogle Scholar
  8. 8.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.PubMedGoogle Scholar
  9. 9.
    Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 2013;13:525–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Coffin RS. From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol. 2015;13:93–100.CrossRefPubMedGoogle Scholar
  12. 12.
    Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015 Sep 1;33(25):2780–8.Google Scholar
  13. 13.
    Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342:1432–3.Google Scholar
  14. 14.
    Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183:2533–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Chambers CA, Krummel MF, Boitel B, et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev. 1996;153:27–46.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282:2263–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229:12–26.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66:3381–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 2010;16:399–403.CrossRefPubMedGoogle Scholar
  26. 26.
    Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17:133–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19:4917–24.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Baixeras E, Huard B, Miossec C, et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med. 1992;176:327–37.CrossRefPubMedGoogle Scholar
  33. 33.
    Miyazaki T, Dierich A, Benoist C, Mathis D. LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice. Int Immunol. 1996;8:725–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Bettini M, Szymczak-Workman AL, Forbes K, et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol. 2011;187:3493–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4:1093–101.CrossRefPubMedGoogle Scholar
  37. 37.
    Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med. 2012;18:1394–400.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Woo SR, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.CrossRefPubMedGoogle Scholar
  40. 40.
    Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lefranc M-P, Ge L. The immunoglobulin factsbook. San Diego: Academic Press; 2001.Google Scholar
  43. 43.
    Laurent S, Queirolo P, Boero S, et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J Transl Med. 2013;11:108.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6:230ra45.CrossRefPubMedGoogle Scholar
  45. 45.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31:616–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ribas A, Hauschild A, Kefford R. Reply to K.S. Wilson et al. J Clin Oncol. 2013;31:2836–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.CrossRefPubMedGoogle Scholar
  50. 50.
    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3:36.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.CrossRefPubMedGoogle Scholar
  53. 53.
    Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.CrossRefPubMedGoogle Scholar
  54. 54.
    Ibrahim R, Stewart R, Shalabi A. PD-L1 blockade for cancer treatment: MEDI4736. Semin Oncol. 2015;42:474–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Stewart R, Morrow M, Hammond SA, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3:1052–62.CrossRefPubMedGoogle Scholar
  56. 56.
    Segal NH, Hamid O, Hwu W, et al. 1058PD a phase i multi-arm dose-expansion study of the anti-programmed cell death-ligand-1 (PD-L1) antibody MEDI4736: preliminary data. Ann Oncol. 2014;25:iv365.Google Scholar
  57. 57.
    Antonia S, Iannotti NO, Salamat MA, et al. 16TiP a phase 3, randomised, double-blind, placebo-controlled, international study of MEDI4736 in patients with locally advanced, unresectable NSCLC (Stage III) who have not progressed following platinum-based, concurrent chemoradiation therapy (PACIFIC). Ann Oncol. 2014;25:vi6.CrossRefGoogle Scholar
  58. 58.
    Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Glenn F, Grafe Jr WR. Surgical complications of adrenal steroid therapy. Ann Surg. 1967;165:1023–34.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sterioff S, Orringer MB, Cameron JL. Colon perforations associated with steroid therapy. Surgery. 1974;75:56–8.PubMedGoogle Scholar
  62. 62.
    Beck KE, Blansfield JA, Tran KQ, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006;24:2283–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dilling P, Walczak J, Pikiel P, Kruszewski WJ. Multiple colon perforation as a fatal complication during treatment of metastatic melanoma with ipilimumab—case report. Pol Przegl Chir. 2014;86:94–6.PubMedGoogle Scholar
  64. 64.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMedGoogle Scholar
  65. 65.
    Eggermont AMM, Chiarion-Sileni V, Grob J-J, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16:522–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62.CrossRefPubMedGoogle Scholar
  68. 68.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMedGoogle Scholar
  69. 69.
    Phan GQ, Weber JS, Sondak VK. CTLA-4 blockade with monoclonal antibodies in patients with metastatic cancer: surgical issues. Ann Surg Oncol. 2008;15:3014–21.CrossRefPubMedGoogle Scholar
  70. 70.
    Minor DR, Chin K, Kashani-Sabet M. Infliximab in the treatment of anti-CTLA4 antibody (ipilimumab) induced immune-related colitis. Cancer Biother Radiopharm. 2009;24:321–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Johnston RL, Lutzky J, Chodhry A, Barkin JS. Cytotoxic T-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig Dis Sci. 2009;54:2538–40.CrossRefPubMedGoogle Scholar
  72. 72.
    Pages C, Gornet JM, Monsel G, et al. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res. 2013;23:227–30.CrossRefPubMedGoogle Scholar
  73. 73.
    Merrill SP, Reynolds P, Kalra A, Biehl J, Vandivier RW, Mueller SW. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically Ill patient. Ann Pharmacother. 2014;48:806–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Pham T, Bachelez H, Berthelot JM, et al. TNF alpha antagonist therapy and safety monitoring. Joint Bone Spine. 2011;78 Suppl 1:15–185.CrossRefPubMedGoogle Scholar
  75. 75.
    Burdine L, Lai K, Laryea JA. Ipilimumab-induced colonic perforation. J Surg Case Rep. 2014.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Medical Oncology and Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteUSA

Personalised recommendations