Skip to main content

Immune Sensors and Effectors of Health and Disease

  • Chapter
  • First Online:

Abstract

Since the discovery of inflammasomes more than a decade ago, there has been tremendous development in the understanding of inflammasomes as central nervous system (CNS) disease determinants. The cytokines, IL-1β and IL-18, are implicated in both acute and chronic neuroinflammatory disorders. The cells of macrophage lineage represent the powerhouse of inflammasome activation in the CNS, although other cells including astrocytes and neurons exhibit inflammasome activation in stimulus and species restricted manner. The outcomes of inflammasome activation in the CNS are wide ranging encompassing both protective and pathogenic consequences depending on the individual PAMP/DAMP, inflammasome, cell type and species. The activation of inflammasomes is a complex sequence of events that lends itself to opportunities for modulation at multiple steps and demands further exploration. However, with the current understanding of molecular mechanisms underlying the effects of inflammasome inhibitors, it is feasible to target inflammasome activation at an early stage to delay neurological disease onset and progression. A major concern remains as to whether targeting at the level of inflammasome or blocking the cytokines will be beneficial for control of neuropathogenesis. Given an early prediction of disease, targeting upstream at the level of inflammasome induction would optimize outcomes by not only limiting levels of cytokine release into the brain microenvironment, but also by reducing cell death due to pyroptosis. As new therapies are developed targeting the sensor, adaptor and effector components of inflammasomes, the prospect of regulating inflammasome activation at multiple stages may become a clinical reality, permitting improved outcomes for inflammasome-driven neurological diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 29(3):534–544. doi:10.1038/jcbfm.2008.143

    Article  CAS  PubMed  Google Scholar 

  • Adamczak SE, de Rivero Vaccari JP, Dale G, Brand FJ III, Nonner D, Bullock MR, Dahl GP, Dietrich WD, Keane RW (2014) Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 34(4):621–629. doi:10.1038/jcbfm.2013.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115(8):2047–2058. doi:10.1172/JCI25495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, White RF, McVey MJ, Legos JJ, Erhardt JA, Nelson AH, Ohlstein EH, Hunter AJ, Ward K, Smith BR, Adams JL, Parsons AA (2001) SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther 296(2):312–321

    CAS  PubMed  Google Scholar 

  • Bartlett R, Yerbury JJ, Sluyter R (2013) P2X7 receptor activation induces reactive oxygen species formation and cell death in murine EOC13 microglia. Mediators Inflamm 2013:271813. doi:10.1155/2013/271813

    Article  PubMed  PubMed Central  Google Scholar 

  • Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG, Larsson M, Gorelick RJ, Lifson JD, Bhardwaj N (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275. doi:10.1172/JCI26032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Haij N, Leghmari K, Planes R, Thieblemont N, Bahraoui E (2013) HIV-1 Tat protein binds to TLR4-MD2 and signals to induce TNF-alpha and IL-10. Retrovirology 10:123. doi:10.1186/1742-4690-10-123

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. doi:10.1038/nrmicro2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710. doi:10.1038/89490

    Article  CAS  PubMed  Google Scholar 

  • Broz P, Monack DM (2011) Molecular mechanisms of inflammasome activation during microbial infections. Immunol Rev 243(1):174–190. doi:10.1111/j.1600-065X.2011.01041.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19(9):455–464. doi:10.1016/j.tcb.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  • Burm SM, Zuiderwijk-Sick EA, t Jong AE, van der Putten C, Veth J, Kondova I, Bajramovic JJ (2015) Inflammasome-induced IL-1beta secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases. J Neurosci 35(2):678–687. doi:10.1523/JNEUROSCI.2510-14.2015

    Article  PubMed  Google Scholar 

  • Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158. doi:10.1136/bmj.b158

    Article  PubMed  Google Scholar 

  • Chakraborty A, Van LM, Skerjanec A, Floch D, Klein UR, Krammer G, Sunkara G, Howard D (2013) Pharmacokinetic and pharmacodynamic properties of canakinumab in patients with gouty arthritis. J Clin Pharmacol 53(12):1240–1251. doi:10.1002/jcph.162

    Article  CAS  PubMed  Google Scholar 

  • Cheung R, Ravyn V, Wang L, Ptasznik A, Collman RG (2008) Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages. J Immunol 180(10):6675–6684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M (2013) Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One 8(1):e55375. doi:10.1371/journal.pone.0055375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coll RC, Robertson A, Butler M, Cooper M, O’Neill LA (2011) The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One 6(12):e29539. doi:10.1371/journal.pone.0029539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255. doi:10.1038/nm.3806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dagenais M, Skeldon A, Saleh M (2012) The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ 19(1):5–12. doi:10.1038/cdd.2011.159

    Article  CAS  PubMed  Google Scholar 

  • de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28(13):3404–3414. doi:10.1523/JNEUROSCI.0157-08.2008

    Article  PubMed  Google Scholar 

  • Denes A, Thornton P, Rothwell NJ, Allan SM (2010) Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 24(5):708–723. doi:10.1016/j.bbi.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652. doi:10.1038/nrd3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Moskowitz SI, Li R, Lee SB, Esteban M, Tomaselli K, Chan J, Bergold PJ (2000) Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp Neurol 162(1):1–12. doi:10.1006/exnr.2000.7226

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Qiao H, Zhang X, Zhang X, Wang C, Wang L, Cui L, Zhao J, Xing Y, Li Y, Liu Z, Zhu C (2013) Parthenolide is neuroprotective in rat experimental stroke model: downregulating NF-kappaB, phospho-p38MAPK, and caspase-1 and ameliorating BBB permeability. Mediators Inflamm 2013:370804. doi:10.1155/2013/370804

    Article  PubMed  PubMed Central  Google Scholar 

  • Drenth JP, van der Meer JW (2001) Hereditary periodic fever. N Engl J Med 345(24):1748–1757. doi:10.1056/NEJMra010200

    Article  CAS  PubMed  Google Scholar 

  • Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12(4):941–966. doi:10.1016/j.arr.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  • Fiore AE, Moroney JF, Farley MM, Harrison LH, Patterson JE, Jorgensen JH, Cetron M, Kolczak MS, Breiman RF, Schuchat A (2000) Clinical outcomes of meningitis caused by Streptococcus pneumoniae in the era of antibiotic resistance. Clin Infect Dis 30(1):71–77. doi:10.1086/313606

    Article  CAS  PubMed  Google Scholar 

  • Furlan R, Filippi M, Bergami A, Rocca MA, Martinelli V, Poliani PL, Grimaldi LM, Desina G, Comi G, Martino G (1999) Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 67(6):785–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geldhoff M, Mook-Kanamori BB, Brouwer MC, Troost D, Leemans JC, Flavell RA, Van der Ende A, Van der Poll T, Van de Beek D (2013) Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis. BMC Infect Dis 13:358. doi:10.1186/1471-2334-13-358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giat E, Lidar M (2014) Cryopyrin-associated periodic syndrome. Isr Med Assoc J 16(10):659–661

    PubMed  Google Scholar 

  • Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, Farlik M, Decker T, Du Pasquier RA, Romero P, Tschopp J (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2):213–223. doi:10.1016/j.immuni.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  • Hafner-Bratkovic I, Bencina M, Fitzgerald KA, Golenbock D, Jerala R (2012) NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1beta and neuronal toxicity. Cell Mol Life Sci 69(24):4215–4228. doi:10.1007/s00018-012-1140-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanamsagar R, Aldrich A, Kielian T (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J Neurochem 129(4):704–711. doi:10.1111/jnc.12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40(11):1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. doi:10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  • Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451. doi:10.4049/jimmunol.1100790

    Article  CAS  PubMed  Google Scholar 

  • Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B (2007) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 78(10):1092–1096. doi:10.1136/jnnp.2006.110023

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard C, Noe A, Skerjanec A, Holzhauer B, Wernsing M, Ligueros-Saylan M, Thuren T (2014) Safety and tolerability of canakinumab, an IL-1beta inhibitor, in type 2 diabetes mellitus patients: a pooled analysis of three randomised double-blind studies. Cardiovasc Diabetol 13:94. doi:10.1186/1475-2840-13-94

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyun E, Ramachandran R, Cenac N, Houle S, Rousset P, Saxena A, Liblau RS, Hollenberg MD, Vergnolle N (2010) Insulin modulates protease-activated receptor 2 signaling: implications for the innate immune response. J Immunol 184(5):2702–2709. doi:10.4049/jimmunol.0902171

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, Shinohara ML (2012) Interferon-beta therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci Signal 5(225):ra38. doi:10.1126/scisignal.2002767

  • Jamilloux Y, Pierini R, Querenet M, Juruj C, Fauchais AL, Jauberteau MO, Jarraud S, Lina G, Etienne J, Roy CR, Henry T, Davoust N, Ader F (2013) Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection. Glia 61(4):539–549. doi:10.1002/glia.22454

    Article  PubMed  Google Scholar 

  • Jesus AA, Goldbach-Mansky R (2014) IL-1 blockade in autoinflammatory syndromes. Annu Rev Med 65:223–244. doi:10.1146/annurev-med-061512-150641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Lam L, Sadic E, Fernandez F, Tan J, Giunta B (2012) HIV-1 Tat-induced microglial activation and neuronal damage is inhibited via CD45 modulation: a potential new treatment target for HAND. Am J Transl Res 4(3):302–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J, Power C (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27(14):3703–3711. doi:10.1523/JNEUROSCI.5522-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP, Alnemri ES (2010) Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285(13):9792–9802. doi:10.1074/jbc.M109.082305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Roe K, Orillo B, Muruve DA, Nerurkar VR, Gale M Jr, Verma S (2013) Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis. J Virol 87(7):3655–3667. doi:10.1128/JVI.02667-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187(1):61–70. doi:10.1083/jcb.200903124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laule C, Vavasour IM, Leung E, Li DK, Kozlowski P, Traboulsee AL, Oger J, Mackay AL, Moore GR (2011) Pathological basis of diffusely abnormal white matter: insights from magnetic resonance imaging and histology. Mult Scler 17(2):144–150. doi:10.1177/1352458510384008

    Article  PubMed  Google Scholar 

  • Lee HM, Kang J, Lee SJ, Jo EK (2013) Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria. Glia 61(3):441–452. doi:10.1002/glia.22448

    Article  PubMed  Google Scholar 

  • Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol 10(4):528–546. doi:10.1007/s11481-015-9614-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, Schilte C, Chaperot L, Plumas J, Randall RE, Si-Tahar M, Mammano F, Albert ML, Schwartz O (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7(2):e1001284. doi:10.1371/journal.ppat.1001284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81(2):570–579. doi:10.1128/IAI.01003-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chan C (2014) IPAF inflammasome is involved in interleukin-1beta production from astrocytes, induced by palmitate; implications for Alzheimer’s disease. Neurobiol Aging 35(2):309–321. doi:10.1016/j.neurobiolaging.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  • Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L, Hang CH (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38(10):2072–2083. doi:10.1007/s11064-013-1115-z

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH (2014a) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. doi:10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Sun XL, Qiao C, Liu Y, Ding JH, Hu G (2014b) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35(2):421–430. doi:10.1016/j.neurobiolaging.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie SH, Schipper JL, Clark AC (2010) The potential for caspases in drug discovery. Curr Opin Drug Discov Devel 13(5):568–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier NK, Crown D, Liu J, Leppla SH, Moayeri M (2014) Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J Immunol 192(2):763–770. doi:10.4049/jimmunol.1301434

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, Federici M, Van Tassell BW, Zhang S, Abbate A (2014) A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 63(4):316–322. doi:10.1097/FJC.0000000000000053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A (2011) Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8(2):304–315. doi:10.1007/s13311-011-0039-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14(1):10–22. doi:10.1038/sj.cdd.4402038

    Article  CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  • McAfoose J, Baune BT (2009) Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 33(3):355–366. doi:10.1016/j.neubiorev.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  • McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy J, Frucht DM, Aringer M, Torosyan Y, Teppo AM, Wilson M, Karaarslan HM, Wan Y, Todd I, Wood G, Schlimgen R, Kumarajeewa TR, Cooper SM, Vella JP, Amos CI, Mulley J, Quane KA, Molloy MG, Ranki A, Powell RJ, Hitman GA, O’Shea JJ, Kastner DL (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97(1):133–144

    Article  CAS  PubMed  Google Scholar 

  • Minkiewicz J, de Rivero Vaccari JP, Keane RW (2013) Human astrocytes express a novel NLRP2 inflammasome. Glia 61(7):1113–1121. doi:10.1002/glia.22499

    Article  PubMed  Google Scholar 

  • Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14(5):454–460. doi:10.1038/ni.2550

    Article  CAS  PubMed  Google Scholar 

  • Moretti S, Bozza S, Oikonomou V, Renga G, Casagrande A, Iannitti RG, Puccetti M, Garlanda C, Kim S, Li S, van de Veerdonk FL, Dinarello CA, Romani L (2014) IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog 10(11):e1004462. doi:10.1371/journal.ppat.1004462

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. doi:10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA (2015) Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol 33:49–77. doi:10.1146/annurev-immunol-032414-112306

    Article  CAS  PubMed  Google Scholar 

  • Nurmi K, Virkanen J, Rajamaki K, Niemi K, Kovanen PT, Eklund KK (2013) Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages—a novel anti-inflammatory action of alcohol. PLoS One 8(11):e78537. doi:10.1371/journal.pone.0078537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Chen XY, Zhang QY, Kong LD (2014) Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 41:90–100. doi:10.1016/j.bbi.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  • Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C (2013) Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 27(7):2829–2844. doi:10.1096/fj.13-227868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamaki K, Nordstrom T, Nurmi K, Akerman KE, Kovanen PT, Oorni K, Eklund KK (2013) Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem 288(19):13410–13419. doi:10.1074/jbc.M112.426254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, Sodhi K, Treuting PM, Busch MP, Norris PJ, Gale M Jr (2012) IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog 8(11), e1003039. doi:10.1371/journal.ppat.1003039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross FM, Allan SM, Rothwell NJ, Verkhratsky A (2003) A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol 144(1–2):61–67

    Article  CAS  PubMed  Google Scholar 

  • Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C (2015) Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 12(1):21. doi:10.1186/s12974-015-0239-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD (2014) Caspase-1: the inflammasome and beyond. Innate Immun 20(2):115–125. doi:10.1177/1753425913484374

    Article  PubMed  Google Scholar 

  • Tan MS, Yu JT, Jiang T, Zhu XC, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48(3):875–882. doi:10.1007/s12035-013-8475-x

    Article  CAS  PubMed  Google Scholar 

  • Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287. doi:10.1016/j.immuni.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. doi:10.1038/nri2725

    Article  CAS  PubMed  Google Scholar 

  • Tyor WR, Glass JD, Baumrind N, McArthur JC, Griffin JW, Becker PS, Griffin DE (1993) Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy. Neurology 43(5):1002–1009

    Article  CAS  PubMed  Google Scholar 

  • van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32(3):110–116. doi:10.1016/j.it.2011.01.003

    Article  PubMed  Google Scholar 

  • Walsh JG, Reinke SN, Mamik MK, McKenzie BA, Maingat F, Branton WG, Broadhurst DI, Power C (2014) Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11:35. doi:10.1186/1742-4690-11-35

    Article  PubMed  PubMed Central  Google Scholar 

  • Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, Decker C, Charifson P, Weber P, Germann UA, Kuida K, Randle JC (2007) (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoy l)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther 321(2):509–516. doi:10.1124/jpet.106.111344

  • Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18. doi:10.3389/fneur.2013.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing HQ, Hayakawa H, Izumo K, Kubota R, Gelpi E, Budka H, Izumo S (2009a) In vivo expression of proinflammatory cytokines in HIV encephalitis: an analysis of 11 autopsy cases. Neuropathology 29(4):433–442. doi:10.1111/j.1440-1789.2008.00996.x

    Article  PubMed  Google Scholar 

  • Xing HQ, Moritoyo T, Mori K, Sugimoto C, Ono F, Izumo S (2009b) Expression of proinflammatory cytokines and its relationship with virus infection in the brain of macaques inoculated with macrophage-tropic simian immunodeficiency virus. Neuropathology 29(1):13–19. doi:10.1111/j.1440-1789.2008.00929.x

    Article  PubMed  Google Scholar 

  • Yin Y, Yan Y, Jiang X, Mai J, Chen NC, Wang H, Yang XF (2009) Inflammasomes are differentially expressed in cardiovascular and other tissues. Int J Immunopathol Pharmacol 22(2):311–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM, Power C (2003) HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6(10):1064–1071. doi:10.1038/nn1127

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang X, Liu X, Wang H, Xue J, Yu J, Kang N, Wang X (2014) Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice. Mediators Inflamm 2014:370530. doi:10.1155/2014/370530

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, Wang W, Wang YX, Jiang CL (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol 18(8):pyv006. doi:10.1093/ijnp/pyv006

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Hu Z (2010) The enigmatic processing and secretion of interleukin-33. Cell Mol Immunol 7(4):260–262. doi:10.1038/cmi.2010.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwijnenburg PJ, van der Poll T, Florquin S, van Deventer SJ, Roord JJ, van Furth AM (2001) Experimental pneumococcal meningitis in mice: a model of intranasal infection. J Infect Dis 183(7):1143–1146. doi:10.1086/319271

    Article  CAS  PubMed  Google Scholar 

  • Zwijnenburg PJ, van der Poll T, Florquin S, Roord JJ, Van Furth AM (2003) IL-1 receptor type 1 gene-deficient mice demonstrate an impaired host defense against pneumococcal meningitis. J Immunol 170(9):4724–4730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MKM is supported by an Alberta Innovates-Health Solution Fellowship. CP is supported by a Canada Research Chair in Neurological Infection and Immunity. The authors thank Brienne McKenzie and John G. Walsh for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Power .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mamik, M.K., Power, C. (2017). Immune Sensors and Effectors of Health and Disease. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_8

Download citation

Publish with us

Policies and ethics