Skip to main content

Immunotherapies for Movement Disorders: Parkinson’s Disease and Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
Neuroimmune Pharmacology

Abstract

Although patterns of neuronal degeneration are unique in PD and ALS, both disorders share common pathways and processes that support and possibly initiate neurodegeneration. Most of these processes are associated with induction, propagation, or consequences of neuroinflammation. Increased numbers of microglia that express reactive phenotypes and proximate dying neurons reflect the neuroinflammatory cellular response. Neuroinflammation amplifies oxidative stresses via reactive oxygen, nitrogen, and carbon species that react with biomolecules and increase molecular modifications of lipids, proteins, and nucleic acids. These reactive modifications eventually become deleterious to biochemical and cellular processes resulting in dysregulation of cellular functions and further neuronal injury and death. Whether neuroinflammatory responses are causal or consequential remains to be determined. Nevertheless, the importance of inflammatory responses to neurodegeneration is underscored in animal models, whereby attenuation of neuroinflammation by genetic manipulation or pharmacological agents mitigates neurodegeneration and increases neuronal survival. As such, immunological strategies that target neuroinflammatory processes represent promising candidates for therapeutic intervention in neurodegenerative disorders. These strategies embrace the capacity of regulatory T cells to protect neurons either directly via neurotrophic factors, or indirectly by modulation of microglial function to attenuate neuroinflammatory responses and by induction of astrocyte-derived neurotrophic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Isobe C, Murata T, Sato C, Tohgi H (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 336(2):105–108

    Article  CAS  PubMed  Google Scholar 

  • Addy C, Assaid C, Hreniuk D, Stroh M, Xu Y, Herring WJ, Ellenbogen A, Jinnah HA, Kirby L, Leibowitz MT, Stewart RM, Tarsy D, Tetrud J, Stoch SA, Gottesdiener K, Wagner J (2009) Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol 49(7):856–864. doi:10.1177/0091270009336735

    Article  CAS  PubMed  Google Scholar 

  • Agbay A, Mohtaram NK, Willerth SM (2014) Controlled release of glial cell line-derived neurotrophic factor from poly(epsilon-caprolactone) microspheres. Drug Deliv Transl Res 4(2):159–170. doi:10.1007/s13346-013-0189-0

    Article  CAS  PubMed  Google Scholar 

  • Aguirre N, Flint Beal M, Matson WR, Bogdanov MB (2005) Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic Res 39(4):383–388. doi:10.1080/10715760400027979

    Article  CAS  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that cross-react with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94(20):10821–10826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A 97(21):11472–11477. doi:10.1073/pnas.97.21.11472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert JC, Beaune P, Laurent-Puig P, Loriot MA, Charron D, Elbaz A (2012) Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disord 27(9):1104–1110. doi:10.1002/mds.25035

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 639(1):171–174

    Article  CAS  PubMed  Google Scholar 

  • Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69(3):1326–1329

    Article  CAS  PubMed  Google Scholar 

  • Almer G, Vukosavic S, Romero N, Przedborski S (1999) Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 72(6):2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Aly AE, Waszczak BL (2015) Intranasal gene delivery for treating Parkinson’s disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 12(12):1923–1941. doi:10.1517/17425247.2015.1069815

    Article  CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, Ludolph A, Schwartz M (2003) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100(8):4790–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antel JP, Arnason BG, Fuller TC, Lehrich JR (1976) Histocompatibility typing in amyotrophic lateral sclerosis. Arch Neurol 33(6):423–425

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 47(4):524–527

    Article  CAS  PubMed  Google Scholar 

  • Appel SH, Stockton-Appel V, Stewart SS, Kerman RH (1986) Amyotrophic lateral sclerosis. Associated clinical disorders and immunological evaluations. Arch Neurol 43(3):234–238

    Article  CAS  PubMed  Google Scholar 

  • Appel SH, Engelhardt JI, Garcia J, Stefani E (1991) Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. Proc Natl Acad Sci U S A 88(2):647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai T, Fukae J, Hatano T, Kubo S, Ohtsubo T, Nakabeppu Y, Mori H, Mizuno Y, Hattori N (2006) Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson’s disease. Acta Neuropathol 112(2):139–145. doi:10.1007/s00401-006-0081-9

    Article  CAS  PubMed  Google Scholar 

  • Arnon R, Sela M (2003) Immunomodulation by the copolymer glatiramer acetate. J Mol Recognit 16(6):412–421

    Article  CAS  PubMed  Google Scholar 

  • Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11(1):25–40. doi:10.1038/nrneurol.2014.226

    Article  CAS  PubMed  Google Scholar 

  • Auclair JR, Johnson JL, Liu Q, Salisbury JP, Rotunno MS, Petsko GA, Ringe D, Brown RH Jr, Bosco DA, Agar JN (2013) Post-translational modification by cysteine protects Cu/Zn-superoxide dismutase from oxidative damage. Biochemistry 52(36):6137–6144. doi:10.1021/bi4006122

    Article  CAS  PubMed  Google Scholar 

  • Ayata C, Ayata G, Hara H, Matthews RT, Beal MF, Ferrante RJ, Endres M, Kim A, Christie RH, Waeber C, Huang PL, Hyman BT, Moskowitz MA (1997) Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J Neurosci 17(18):6908–6917

    CAS  PubMed  Google Scholar 

  • Baillet A, Chanteperdrix V, Trocme C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35(10):1530–1537. doi:10.1007/s11064-010-0212-5

    Article  CAS  PubMed  Google Scholar 

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25(3):335–358

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE (2008) Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 3(7), e2740. doi:10.1371/journal.pone.0002740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barkhordarian H, Emadi S, Schulz P, Sierks MR (2006) Isolating recombinant antibodies against specific protein morphologies using atomic force microscopy and phage display technologies. Protein Eng Des Sel 19(11):497–502

    Article  CAS  PubMed  Google Scholar 

  • Bartfeld H, Dham C, Donnenfeld H, Jashnani L, Carp R, Kascsak R, Vilcek J, Rapport M, Wallenstein S (1982) Immunological profile of amyotrophic lateral sclerosis patients and their cell-mediated immune responses to viral and CNS antigens. Clin Exp Immunol 48(1):137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bas J, Calopa M, Mestre M, Mollevi DG, Cutillas B, Ambrosio S, Buendia E (2001) Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 113(1):146–152

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Flachenecker P, Magnus T, Giess R, Reiners K, Toyka KV, Naumann M (2005) Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph Lateral Scler Other Motor Neuron Disord 6(2):100–103. doi:10.1080/14660820510028412

    Article  CAS  PubMed  Google Scholar 

  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021–16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beers DR, Henkel JS, Zhao W, Wang J, Appel SH (2008) CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 105(40):15558–15563. doi:10.1073/pnas.0807419105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Younes-Chennoufi A, Meininger V, Leger JM, Bouche P, Jauberteau MO, Baumann N (1992) Antiganglioside antibodies in motor-neuron diseases and peripheral neuropathies: study by ELISA technique and immunodetection on thin-layer chromatography. Neurochem Int 20(3):353–357

    Article  CAS  PubMed  Google Scholar 

  • Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(25):9435–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3(1), e1376. doi:10.1371/journal.pone.0001376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besong-Agbo D, Wolf E, Jessen F, Oechsner M, Hametner E, Poewe W, Reindl M, Oertel WH, Noelker C, Bacher M, Dodel R (2013) Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80:169–175

    Article  CAS  PubMed  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392

    Article  CAS  PubMed  Google Scholar 

  • Bornebroek M, de Lau LM, Haag MD, Koudstaal PJ, Hofman A, Stricker BH, Breteler MM (2007) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Neuroepidemiology 28(4):193–196. doi:10.1159/000108110

    Article  PubMed  Google Scholar 

  • Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RH Jr (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13(11):1396–1403. doi:10.1038/nn.2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, Mosley RL, Gendelman HE (2005) Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease. J Neurosci 25(7):1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308

    Google Scholar 

  • Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I (2015) Glitazone treatment and incidence of Parkinson’s disease among people with diabetes: a retrospective Cohort Study. PLoS Med 12(7), e1001854. doi:10.1371/journal.pmed.1001854

    Article  PubMed  PubMed Central  Google Scholar 

  • Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82(3):615–624

    Article  CAS  PubMed  Google Scholar 

  • Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–192. doi:10.1172/JCI36470

    CAS  PubMed  Google Scholar 

  • Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27(3):325–355

    Article  CAS  PubMed  Google Scholar 

  • Bruijn LI, Beal MF, Becher MW, Schulz JB, Wong PC, Price DL, Cleveland DW (1997a) Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A 94(14):7606–7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997b) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18(2):327–338

    Article  CAS  PubMed  Google Scholar 

  • Calingasan NY, Chen J, Kiaei M, Beal MF (2005) Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol Dis 19(1–2):340–347

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227(4685):375–381

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    Article  CAS  PubMed  Google Scholar 

  • Chen TS, Richie JP Jr, Lang CA (1989) The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc Soc Exp Biol Med 190(4):399–402

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Bagley J, Marasco WA (1994) Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 5(5):595–601

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6(7):797–801

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77(6):1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60(8):1059–1064

    Article  PubMed  Google Scholar 

  • Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58(6):963–967

    Article  CAS  PubMed  Google Scholar 

  • Chen CM, Liu JL, Wu YR, Chen YC, Cheng HS, Cheng ML, Chiu DT (2009) Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis 33(3):429–435. doi:10.1016/j.nbd.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Feng W, Huang R, Guo X, Chen Y, Zheng Z, Shang H (2014) Evidence for peripheral immune activation in amyotrophic lateral sclerosis. J Neurol Sci 347(1–2):90–95. doi:10.1016/j.jns.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Qi B, Xu W, Ma B, Li L, Chen Q, Qian W, Liu X, Qu H (2015) Clinical correlation of peripheral CD4+ cell subsets, their imbalance and Parkinson’s disease. Mol Med Rep 12(4):6105–6111. doi:10.3892/mmr.2015.4136

    CAS  PubMed  Google Scholar 

  • Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M, Maniatis T, Carroll MC (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A 106(49):20960–20965. doi:10.1073/pnas.0911405106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279(13):13256–13264. doi:10.1074/jbc.M314124200

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE, Gearing M, Levey AI, Chin LS, Li L (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281(16):10816–10824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou SM, Wang HS, Komai K (1996) Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J Chem Neuroanat 10(3–4):249–258

    Article  CAS  PubMed  Google Scholar 

  • Choubey V, Safiulina D, Vaarmann A, Cagalinec M, Wareski P, Kuum M, Zharkovsky A, Kaasik A (2011) Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J Biol Chem 286(12):10814–10824. doi:10.1074/jbc.M110.132514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302(5642):113–117

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo R, Comi GP (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127(Pt 11):2518–2532

    Article  PubMed  Google Scholar 

  • Cova E, Bongioanni P, Cereda C, Metelli MR, Salvaneschi L, Bernuzzi S, Guareschi S, Rossi B, Ceroni M (2010) Time course of oxidant markers and antioxidant defenses in subgroups of amyotrophic lateral sclerosis patients. Neurochem Int 56(5):687–693. doi:10.1016/j.neuint.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  • Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB (2005) Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Culcasi M, Lafon-Cazal M, Pietri S, Bockaert J (1994) Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem 269(17):12589–12593

    CAS  PubMed  Google Scholar 

  • Dairam A, Antunes EM, Saravanan KS, Daya S (2006) Non-steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryptophan 2,3-dioxygenase activity and alter brain neurotransmitter levels. Life Sci 79:2269–2274

    Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Ganea D (2003) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17(8):944–946. doi:10.1096/fj.02-0799fje

    CAS  PubMed  Google Scholar 

  • Delgado M, Leceta J, Gomariz RP, Ganea D (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide stimulate the induction of Th2 responses by up-regulating B7.2 expression. J Immunol 163(7):3629–3635

    CAS  PubMed  Google Scholar 

  • Delgado M, Gomariz RP, Martinez C, Abad C, Leceta J (2000) Anti-inflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. Eur J Immunol 30(11):3236–3246

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Leceta J, Ganea D (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide promote in vivo generation of memory Th2 cells. FASEB J 16(13):1844–1846

    CAS  PubMed  Google Scholar 

  • Delgado M, Chorny A, Gonzalez-Rey E, Ganea D (2005) Vasoactive intestinal peptide generates CD4+ CD25+ regulatory T cells in vivo. J Leukoc Biol 78(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Depboylu C, Schäfer MK, Arias-Carrión O, Oertel WH, Weihe E, Höglinger GU (2011) Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol 70(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Domercq M, Matute C (2004) Neuroprotection by tetracyclines. Trends Pharmacol Sci 25(12):609–612

    Article  CAS  PubMed  Google Scholar 

  • Donnenfeld H, Kascsak RJ, Bartfeld H (1984) Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol 6(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Dringen R (2000) Glutathione metabolism and oxidative stress in neurodegeneration. Eur J Biochem 267(16):4903

    Article  CAS  PubMed  Google Scholar 

  • Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T (2011) Use of non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease: nested case-control study. BMJ 342:d198. doi:10.1136/bmj.d198

    Article  PubMed  PubMed Central  Google Scholar 

  • Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157(5):1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis L, Dengler R, Heneka MT, Meyer T, Zierz S, Kassubek J, Fischer W, Steiner F, Lindauer E, Otto M, Dreyhaupt J, Grehl T, Hermann A, Winkler AS, Bogdahn U, Benecke R, Schrank B, Wessig C, Grosskreutz J, Ludolph AC, Group GAS (2012) A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 7(6), e37885. doi:10.1371/journal.pone.0037885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgington TS, Dalessio DJ (1970) The assessment by immunofluorescence methods of humoral anti-myelin antibodies in man. J Immunol 105(1):248–255

    CAS  PubMed  Google Scholar 

  • Elizan TS, Terasaki PI, Yahr MD (1980) HLA-B14 antigen and postencephalitic Parkinson’s disease. Their association in an American-Jewish ethnic group. Arch Neurol 37(9):542–544

    Article  CAS  PubMed  Google Scholar 

  • Emadi S, Liu R, Yuan B, Schulz P, McAllister C, Lyubchenko Y, Messer A, Sierks MR (2004) Inhibiting aggregation of alpha-synuclein with human single chain antibody fragments. Biochemistry 43(10):2871–2878

    Article  CAS  PubMed  Google Scholar 

  • Emadi S, Barkhordarian H, Wang MS, Schulz P, Sierks MR (2007) Isolation of a human single chain antibody fragment against oligomeric alpha-synuclein that inhibits aggregation and prevents alpha-synuclein-induced toxicity. J Mol Biol 368(4):1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhardt JI, Appel SH (1990) IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol 47(11):1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt JI, Siklos L, Komuves L, Smith RG, Appel SH (1995) Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons. Synapse 20(3):185–199

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt JI, Siklos L, Appel SH (1997) Altered calcium homeostasis and ultrastructure in motoneurons of mice caused by passively transferred anti-motoneuronal IgG. J Neuropathol Exp Neurol 56(1):21–39

    Article  CAS  PubMed  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JFJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434

    Article  CAS  PubMed  Google Scholar 

  • Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Martin A, Gonzalez-Rey E, Chorny A, Ganea D, Delgado M (2006) Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur J Immunol 36(2):318–326

    Article  CAS  PubMed  Google Scholar 

  • Fondell E, O’Reilly EJ, Fitzgerald KC, Falcone GJ, McCullough ML, Thun MJ, Park Y, Kolonel LN, Ascherio A (2012) Non-steroidal anti-inflammatory drugs and amyotrophic lateral sclerosis: results from five prospective cohort studies. Amyotroph Lateral Scler 13(6):573–579. doi:10.3109/17482968.2012.703209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratantoni SA, Weisz G, Pardal AM, Reisin RC, Uchitel OD (2000) Amyotrophic lateral sclerosis IgG-treated neuromuscular junctions develop sensitivity to L-type calcium channel blocker. Muscle Nerve 23(4):543–550

    Article  CAS  PubMed  Google Scholar 

  • Fukae J, Takanashi M, Kubo S, Nishioka K, Nakabeppu Y, Mori H, Mizuno Y, Hattori N (2005) Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol 109(3):256–262. doi:10.1007/s00401-004-0937-9

    Article  CAS  PubMed  Google Scholar 

  • Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74(12):995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Games D, Seubert P, Rockenstein E, Patrick C, Trejo M, Ubhi K, Ettle B, Ghassemiam M, Barbour R, Schenk D, Nuber S, Masliah E (2013) Axonopathy in an alpha-synuclein transgenic model of Lewy body disease is associated with extensive accumulation of C-terminal-truncated alpha-synuclein. Am J Pathol 182(3):940–953. doi:10.1016/j.ajpath.2012.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sacayon P, Zago W, Seubert P, Barbour R, Schenk D, Masliah E (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454. doi:10.1523/JNEUROSCI.5314-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gangi E, Vasu C, Cheatem D, Prabhakar BS (2005) IL-10-producing CD4+ CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol 174(11):7006–7013

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24(8):395–401

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76(10):863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido M, Tereshchenko Y, Zhevtsova Z, Taschenberger G, Bahr M, Kugler S (2011) Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol 121(4):475–485. doi:10.1007/s00401-010-0791-x

    Article  CAS  PubMed  Google Scholar 

  • Ghadge GD, Pavlovic JD, Koduvayur SP, Kay BK, Roos RP (2013) Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1. Neurobiol Dis 56:74–78. doi:10.1016/j.nbd.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianforcaro A, Hamadeh MJ (2012) Dietary vitamin D3 supplementation at 10× the adequate intake improves functional capacity in the G93A transgenic mouse model of ALS, a pilot study. CNS Neurosci Ther 8(7):547–57. doi:10.1111/j.1755-5949.2012.00316.x

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    Article  CAS  PubMed  Google Scholar 

  • Goetzl EJ, Voice JK, Shen S, Dorsam G, Kong Y, West KM, Morrison CF, Harmar AJ (2001) Enhanced delayed-type hypersensitivity and diminished immediate-type hypersensitivity in mice lacking the inducible VPAC(2) receptor for vasoactive intestinal peptide. Proc Natl Acad Sci U S A 98(24):13854–13859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomariz RP, Lorenzo MJ, Cacicedo L, Vicente A, Zapata AG (1990) Demonstration of immunoreactive vasoactive intestinal peptide (IR-VIP) and somatostatin (IR-SOM) in rat thymus. Brain Behav Immun 4(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Gomariz RP, De La Fuente M, Hernanz A, Leceta J (1992) Occurrence of vasoactive intestinal peptide (VIP) in lymphoid organs from rat and mouse. Ann N Y Acad Sci 650:13–18

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Martin J, Pozo D, Ganea D, Delgado M (2006) Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol 168(4):1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good PJ (1995) A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci U S A 92(10):4557–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon PH, Doorish C, Montes J, Mosley RL, Diamond B, Macarthur RB, Weimer LH, Kaufmann P, Hays AP, Rowland LP, Gendelman HE, Przedborski S, Mitsumoto H (2006) Randomized controlled phase II trial of glatiramer acetate in ALS. Neurology 66(7):1117–1119

    Article  CAS  PubMed  Google Scholar 

  • Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, Hilton JF, Spitalny GM, MacArthur RB, Mitsumoto H, Neville HE, Boylan K, Mozaffar T, Belsh JM, Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6(12):1045–1053. doi:10.1016/s1474-4422(07)70270-3

    Article  CAS  PubMed  Google Scholar 

  • Goursaud S, Schafer S, Dumont AO, Vergouts M, Gallo A, Desmet N, Deumens R, Hermans E (2015) The anti-inflammatory peptide stearyl-norleucine-VIP delays disease onset and extends survival in a rat model of inherited amyotrophic lateral sclerosis. Exp Neurol 263:91–101. doi:10.1016/j.expneurol.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  • Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5(4):213–219

    Article  CAS  PubMed  Google Scholar 

  • Gredal O, Pakkenberg B, Nielsen M (1996) Muscarinic, N-methyl-D-aspartate (NMDA) and benzodiazepine receptor binding sites in cortical membranes from amyotrophic lateral sclerosis patients. J Neurol Sci 143(1–2):121–125

    Article  CAS  PubMed  Google Scholar 

  • Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L (2002) A 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 51(5):1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Gros-Louis F, Soucy G, Lariviere R, Julien JP (2010) Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem 113(5):1188–1199. doi:10.1111/j.1471-4159.2010.06683.x

    CAS  PubMed  Google Scholar 

  • Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A 109(13):5074–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habisch HJ, Schwalenstocker B, Danzeisen R, Neuhaus O, Hartung HP, Ludolph A (2007) Limited effects of glatiramer acetate in the high-copy number hSOD1-G93A mouse model of ALS. Exp Neurol 206(2):288–295. doi:10.1016/j.expneurol.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  • Hald A, Lotharius J (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Hancock DB, Martin ER, Vance JM, Scott WK (2008) Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease. Neurogenetics 9(4):249–262. doi:10.1007/s10048-008-0137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J, Cookson MR, Singleton A (2003) Genes and parkinsonism. Lancet Neurol 2(4):221–228. doi:10.1016/s1474-4422(03)00350-8

    Article  CAS  PubMed  Google Scholar 

  • Heinzel S, Gold M, Deuschle C, Bernhard F, Maetzler W, Berg D, Dodel R (2014) Naturally occurring alpha-synuclein autoantibodies in Parkinson’s disease: sources of (error) variance in biomarker assays. PLoS One 9(12), e114566. doi:10.1371/journal.pone.0114566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55(2):221–235

    Article  CAS  PubMed  Google Scholar 

  • Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, Zhao W, Moore DH, Powell SZ, Appel SH (2013) Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 5(1):64–79. doi:10.1002/emmm.201201544

    Article  CAS  PubMed  Google Scholar 

  • Hernán MA, Logroscino G, García Rodríguez LA (2006) Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology 66(7):1097–1099

    Article  PubMed  Google Scholar 

  • Hewett SJ, Silakova JM, Hewett JA (2006) Oral treatment with rofecoxib reduces hippocampal excitotoxic neurodegeneration. J Pharmacol Exp Ther 319:1219–1224

    Google Scholar 

  • Hoban DB, Howard L, Dowd E (2015) GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson’s disease. Neuroscience 303:402–411. doi:10.1016/j.neuroscience.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PM, Robbins DS, Gibbs CJJ, Gajdusek DC, Garruto RM, Terasaki OI (1977) Histocompatibility antigens in amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Lancet 2(8040):717

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PM, Robbins DS, Nolte MT, Gibbs CJ Jr, Gajdusek DC (1978) Cellular immunity in Guamanians with amyotrophic lateral sclerosis and Parkinsonism-dementia. N Engl J Med 299(13):680–685

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PM, Robbins DS, Oldstone MB, Gibbs CJ Jr, Gajdusek DC (1981) Humoral immunity in Guamanians with amyotrophic lateral sclerosis and parkinsonism-dementia. Ann Neurol 10(2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999) FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19(9):3440–3447

    CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Fox SH, Brotchie JM (2015) Pioglitazone may impair L-DOPA anti-parkinsonian efficacy in the MPTP-lesioned macaque: results of a pilot study. Synapse 69(3):99–102. doi:10.1002/syn.21801

    Article  CAS  PubMed  Google Scholar 

  • Hyun DH, Lee M, Halliwell B, Jenner P (2003) Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86(2):363–373

    Article  CAS  PubMed  Google Scholar 

  • Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364(9440):1169–1171

    Article  CAS  PubMed  Google Scholar 

  • Ibarra A, Avendano H, Cruz Y (2007) Copolymer-1 (Cop-1) improves neurological recovery after middle cerebral artery occlusion in rats. Neurosci Lett 425(2):110–113. doi:10.1016/j.neulet.2007.08.038

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Nobukuni K, Takata H, Hayabara T (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27(1):105–108

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol (Berl) 106(6):518–526

    Article  CAS  Google Scholar 

  • International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649. doi:10.1016/s0140-6736(10)62345-8

    Article  PubMed Central  CAS  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 469(1):159–163. doi:10.1016/j.neulet.2009.11.065

    Article  CAS  PubMed  Google Scholar 

  • Jawaid A, Paganoni S, Hauser C, Schulz PE (2014) Trials of antidiabetic drugs in amyotrophic lateral sclerosis: proceed with caution? Neurodegener Dis 13(4):205–208. doi:10.1159/000353158

    CAS  PubMed  Google Scholar 

  • Jokelainen M, Tiilikainen A, Lapinleimu K (1977) Polio antibodies and HLA antigens in amyotrophic lateral sclerosis. Tissue Antigens 10(4):259–266

    Article  CAS  PubMed  Google Scholar 

  • Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, Lee S, Whitacre CC, Popovich PG (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22(7):2690–2700

    CAS  PubMed  Google Scholar 

  • Jones TB, Hart RP, Popovich PG (2005) Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 25(28):6576–6583. doi:10.1523/JNEUROSCI.0305-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabashi E, Durham HD (2006) Failure of protein quality control in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):1038–1050

    Article  CAS  PubMed  Google Scholar 

  • Kabashi E, Agar JN, Strong MJ, Durham HD (2012) Impaired proteasome function in sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13(4):367–371. doi:10.3109/17482968.2012.686511

    Article  CAS  PubMed  Google Scholar 

  • Kabuta T, Suzuki Y, Wada K (2006) Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J Biol Chem 281(41):30524–30533

    Article  CAS  PubMed  Google Scholar 

  • Kalra S, Genge A, Arnold DL (2003) A prospective, randomized, placebo-controlled evaluation of corticoneuronal response to intrathecal BDNF therapy in ALS using magnetic resonance spectroscopy: feasibility and results. Amyotroph Lateral Scler Other Motor Neuron Disord 4(1):22–26

    Article  CAS  PubMed  Google Scholar 

  • Kaltreider HB, Ichikawa S, Byrd PK, Ingram DA, Kishiyama JL, Sreedharan SP, Warnock ML, Beck JM, Goetzl EJ (1997) Upregulation of neuropeptides and neuropeptide receptors in a murine model of immune inflammation in lung parenchyma. Am J Respir Cell Mol Biol 16(2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Viswanath V, Jha N, Qiao X, Mo JQ, Andersen JK (1999) Brain gamma-glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. J Neurosci Res 58(3):436–441

    Article  CAS  PubMed  Google Scholar 

  • Kashiwado K, Yoshiyama Y, Arai K, Hattori T (2002) Expression of nitric oxide synthases in the anterior horn cells of amyotrophic lateral sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 26(1):163–167

    Article  CAS  PubMed  Google Scholar 

  • Kawamata T, Akiyama H, Yamada T, McGeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140(3):691–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller MF, Ferrucci L, Singleton AB, Tienari PJ, Laaksovirta H, Restagno G, Chio A, Traynor BJ, Nalls MA (2014) Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 71(9):1123–1134. doi:10.1001/jamaneurol.2014.1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005a) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191(2):331–336. doi:10.1016/j.expneurol.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  • Kiaei M, Kipiani K, Petri S, Choi DK, Chen J, Calingasan NY, Beal MF (2005b) Integrative role of cPLA with COX-2 and the effect of non-steriodal anti-inflammatory drugs in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 93(2):403–411. doi:10.1111/j.1471-4159.2005.03024.x

    Article  CAS  PubMed  Google Scholar 

  • Kim NK, Choi BH, Huang X, Snyder BJ, Bukhari S, Kong TH, Park H, Park HC, Park SR, Ha Y (2009) Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson’s disease model. Eur J Neurosci 29(5):891–900. doi:10.1111/j.1460-9568.2009.06653.x

    Article  PubMed  Google Scholar 

  • Kimura F, Smith RG, Delbono O, Nyormoi O, Schneider T, Nastainczyk W, Hofmann F, Stefani E, Appel SH (1994) Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel alpha 1 subunit. Ann Neurol 35(2):164–171

    Article  CAS  PubMed  Google Scholar 

  • Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Schwartz M (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97(13):7446–7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M (2002) Neuroprotective autoimmunity: naturally occurring CD4+ CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 99(24):15620–15625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klegeris A, McGeer PL (2000) Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells. J Leukoc Biol 67(1):127–133

    CAS  PubMed  Google Scholar 

  • Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16(6):724–739

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4, e525. doi:10.1038/cddis.2013.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo HJ, Yang JE, Park JH, Lee D, Paik SR (2013) alpha-Synuclein-mediated defense against oxidative stress via modulation of glutathione peroxidase. Biochim Biophys Acta 1834(6):972–976. doi:10.1016/j.bbapap.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290(5492):767–773

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz O, Ay H, Ulupinar E, Tuncel N (2012) Vasoactive intestinal peptide enhances striatal plasticity and prevents dopaminergic cell loss in Parkinsonian rats. J Mol Neurosci 48(3):565–573. doi:10.1007/s12031-012-9781-x

    Article  CAS  PubMed  Google Scholar 

  • Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE (2013) GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. J Neuroimmunol 265(1–2):1–10. doi:10.1016/j.jneuroim.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  • Kott E, Livni E, Zamir R, Kuritzky A (1979) Cell-mediated immunity to polio and HLA antigens in amyotrophic lateral sclerosis. Neurology 29(7):1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Kouti L, Noroozian M, Akhondzadeh S, Abdollahi M, Javadi MR, Faramarzi MA, Mousavi S, Ghaeli P (2013) Nitric oxide and peroxynitrite serum levels in Parkinson’s disease: correlation of oxidative stress and the severity of the disease. Eur Rev Med Pharmacol Sci 17(7):964–970

    CAS  PubMed  Google Scholar 

  • Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10:268–278

    Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    Article  CAS  PubMed  Google Scholar 

  • Kunikowska G, Jenner P (2003) Alterations in m-RNA expression for Cu, Zn-superoxide dismutase and glutathione peroxidase in the basal ganglia of MPTP-treated marmosets and patients with Parkinson’s disease. Brain Res 968(2):206–218. doi:10.1016/s0006-8993(03)02240-6

    Article  CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • La Bella V, Goodman JC, Appel SH (1997) Increased CSF glutamate following injection of ALS immunoglobulins. Neurology 48(5):1270–1272

    Article  PubMed  Google Scholar 

  • Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, Eggler JF, Dombroski MA, Geoghegan KF, Gabel CA (2003) Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem 278(19):16567–16578

    Article  CAS  PubMed  Google Scholar 

  • Laloux C, Petrault M, Lecointe C, Devos D, Bordet R (2012) Differential susceptibility to the PPAR-gamma agonist pioglitazone in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson’s disease. Pharmacol Res 65(5):514–522. doi:10.1016/j.phrs.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  • Lampe JB, Gossrau G, Herting B, Kempe A, Sommer U, Fussel M, Weber M, Koch R, Reichmann H (2003) HLA typing and Parkinson’s disease. Eur Neurol 50(2):64–68

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466. doi:10.1002/ana.20737

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605

    Article  CAS  PubMed  Google Scholar 

  • Laurie C, Reynolds A, Cuskun O, Bowman E, Gendelman HE, Mosley RL (2007) CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroimmunol 183(1–2):60–68

    Article  CAS  PubMed  Google Scholar 

  • Le Pecheur M, Bourdon E, Paly E, Farout L, Friguet B, London J (2005) Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice. FEBS Lett 579(17):3613–3618. doi:10.1016/j.febslet.2005.05.048

    Article  PubMed  CAS  Google Scholar 

  • Leceta J, Martinez C, Delgado M, Garrido E, Gomariz RP (1996) Expression of vasoactive intestinal peptide in lymphocytes: a possible endogenous role in the regulation of the immune system. Adv Neuroimmunol 6(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Song GG (2015) Genome-wide pathway analysis in amyotrophic lateral sclerosis. Genet Mol Res 14(2):6429–6438. doi:10.4238/2015.June.11.19

    Article  CAS  PubMed  Google Scholar 

  • Lee YB, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24(8):1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Lee JE, Park JH, Shin IC, Koh HC (2012) Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 213(3):332–344. doi:10.1016/j.toxlet.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Stern GM, Compston DA (1982) Histocompatibility antigens and post-encephalitic Parkinsonism. J Neurol Neurosurg Psychiatry 45(11):1060–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Pestronk A (1991) Autoantibodies to GM1 ganglioside: different reactivity to GM1-liposomes in amyotrophic lateral sclerosis and lower motor neuron disorders. J Neurol Sci 104(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Allen FA Jr, Goetz CG, Mastaglia F, Stajich JM, Gibson RA, Middleton LT, Saunders AM, Scott BL, Small GW, Nicodemus KK, Reed AD, Schmechel DE, Welsh-Bohmer KA, Conneally PM, Roses AD, Gilbert JR, Vance JM, Haines JL, Pericak-Vance MA (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet 70(4):985–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YJ, Oliveira SA, Xu P, Martin ER, Stenger JE, Scherzer CR, Hauser MA, Scott WK, Small GW, Nance MA, Watts RL, Hubble JP, Koller WC, Pahwa R, Stern MB, Hiner BC, Jankovic J, Goetz CG, Mastaglia F, Middleton LT, Roses AD, Saunders AM, Schmechel DE, Gullans SR, Haines JL, Gilbert JR, Vance JM, Pericak-Vance MA, Hulette C, Welsh-Bohmer KA (2003) Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 12(24):3259–3267

    Article  CAS  PubMed  Google Scholar 

  • Li H, Jang W, Kim HJ, Jo KD, Lee MK, Song SH, Yang HO (2015) Biochemical protective effect of 1,25-dihydroxyvitamin D3 through autophagy induction in the MPTP mouse model of Parkinson’s disease. Neuroreport 26(12):669–674. doi:10.1097/WNR.0000000000000401

    Article  CAS  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5(12):1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP, 23andMe Genetic Epidemiology of Parkinson's Disease Consortium; International Parkinson's Disease Genomics Consortium; Parkinson's Disease GWAS Consortium; Wellcome Trust Case Control Consortium 2), Young P, Tanzi RE, Khoury MJ, Zipp F, Lehrach H, Ioannidis JP, Bertram L (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene database. PLoS Gen 8(3):e1002548. doi:10.1371/journal.pgen.1002548

  • Lindstrom V, Fagerqvist T, Nordstrom E, Eriksson F, Lord A, Tucker S, Andersson J, Johannesson M, Schell H, Kahle PJ, Moller C, Gellerfors P, Bergstrom J, Lannfelt L, Ingelsson M (2014) Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] alpha-synuclein mice. Neurobiol Dis 69:134–143. doi:10.1016/j.nbd.2014.05.009

    Article  PubMed  CAS  Google Scholar 

  • Lira A, Kulczycki J, Slack R, Anisman H, Park DS (2011) Involvement of the Fc gamma receptor in a chronic N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of dopaminergic loss. J Biol Chem 286(33):28783–28793. doi:10.1074/jbc.M111.244830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Loeffler DA, Camp DM, Conant SB (2006) Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflammation 3:29. doi:10.1186/1742-2094-3-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lonskaya I, Desforges NM, Hebron ML, Moussa CE (2013) Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance. PLoS One 8(12), e83914. doi:10.1371/journal.pone.0083914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M, Koyama S, Kato T (2010) Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. J Biol Chem 285(52):40732–40744. doi:10.1074/jbc.M110.141952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61(5):427–434. doi:10.1002/ana.21147

    Article  CAS  PubMed  Google Scholar 

  • Maguire-Zeiss KA, Wang CI, Yehling E, Sullivan MA, Short DW, Su X, Gouzer G, Henricksen LA, Wuertzer CA, Federoff HJ (2006) Identification of human alpha-synuclein specific single chain antibodies. Biochem Biophys Res Commun 349(4):1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Maihofner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundorfer B, Heuss D (2003) Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci 18(6):1527–1534

    Article  PubMed  Google Scholar 

  • Mailly F, Marin P, Israël M, Glowinski J, Prémont J (1999) Increase in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis. J Neurochem 73(3):1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Malaspina A, de Belleroche J (2004) Spinal cord molecular profiling provides a better understanding of amyotrophic lateral sclerosis pathogenesis. Brain Res Brain Res Rev 45(3):213–229

    Article  CAS  PubMed  Google Scholar 

  • Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, Santic R, Meindl S, Vigl B, Smrzka O, Schneeberger A, Mattner F, Masliah E (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879. doi:10.1007/s00401-014-1256-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangano EN, Peters S, Litteljohn D, So R, Bethune C, Bobyn J, Clarke M, Hayley S (2011) Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson’s disease. Neurobiol Dis 43(1):99–112. doi:10.1016/j.nbd.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  • Manthripragada AD, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen JH, Ritz B (2011) Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology 36(3):155–161. doi:10.1159/000325653

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M, Bendotti C, Mora G (2009) Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 210(1–2):73–79. doi:10.1016/j.jneuroim.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  • Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P (2012) Pharmacological manipulation of peroxisome proliferator-activated receptor gamma (PPARgamma) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 235(2):528–538. doi:10.1016/j.expneurol.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marttila RJ, Rinne UK, Tiilikainen A (1981) Histocompatibility types in Parkinson’s disease. J Neurol Sci 51(2):217–221

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46(6):857–868

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M, Games D, Schenk D (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6(4), e19338. doi:10.1371/journal.pone.0019338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988a) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24(4):574–576

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988b) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Meininger V, Drory VE, Leigh PN, Ludolph A, Robberecht W, Silani V (2009) Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double- blind, randomized, multicentre, placebo-controlled trial. Amyotroph Lateral Scler 10(5–6):378–383. doi:10.3109/17482960902803432

    Article  CAS  PubMed  Google Scholar 

  • Messer A, McLear J (2006) The therapeutic potential of intrabodies in neurologic disorders: focus on Huntington and Parkinson diseases. BioDrugs 20(6):327–333

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R, Trippi F, Barale R, Frenzilli G, Rodilla V, Bonuccelli U (2002) Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology 58(12):1809–1815

    Article  CAS  PubMed  Google Scholar 

  • Milane A, Fernandez C, Vautier S, Bensimon G, Meininger V, Farinotti R (2007) Minocycline and riluzole brain disposition: interactions with p-glycoprotein at the blood-brain barrier. J Neurochem 103(1):164–173. doi:10.1111/j.1471-4159.2007.04772.x

    CAS  PubMed  Google Scholar 

  • Miller TW, Messer A (2005) Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 12(3):394–401

    Article  CAS  PubMed  Google Scholar 

  • Miller TW, Zhou C, Gines S, MacDonald ME, Mazarakis ND, Bates GP, Huston JS, Messer A (2005) A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin’s fragments in striatal models of Huntington’s disease. Neurobiol Dis 19(1–2):47–56

    Article  CAS  PubMed  Google Scholar 

  • Mischley LK, Leverenz JB, Lau RC, Polissar NL, Neradilek MB, Samii A, Standish LJ (2015) A randomized, double-blind phase I/IIa study of intranasal glutathione in Parkinson’s disease. Mov Disord 30(12):1696–1701. doi:10.1002/mds.26351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuta I, Nishimura M, Mizuta E, Yamasaki S, Ohta M, Kuno S, Ota M (2001) Relation between the high production related allele of the interferon-gamma (IFN-gamma) gene and age at onset of idiopathic Parkinson’s disease in Japan. J Neurol Neurosurg Psychiatry 71(6):818–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley RL, Gordon PH, Hasiak CM, Van Wetering FJ, Mitsumoto H, Gendelman HE (2007) Glatiramer Acetate Immunization Induces Specific Antibody and Cytokine Responses in ALS Patients. Amyotroph Lateral Scler 8(4):235–242

    Article  CAS  PubMed  Google Scholar 

  • Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463. doi:10.1007/s11064-011-0471-9

    Article  CAS  PubMed  Google Scholar 

  • Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, International Parkinson’s Disease Genomics Consortium (IPDGC);Parkinson’s Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson’s Disease Consortium; Alzheimer Genetic Analysis Group, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46(9):989–993. doi:10.1038/ng.3043

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  • Niebroj-Dobosz I, Dziewulska D, Janik P (2006) Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol 44(3):191–196

    CAS  PubMed  Google Scholar 

  • NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators (2015) Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol 14(8):795–803. doi:10.1016/s1474-4422(15)00144-1

    Article  CAS  Google Scholar 

  • Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S (2000) Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson’s disease. Neurosci Lett 284(1–2):73–76

    Article  CAS  PubMed  Google Scholar 

  • Norris FH, Terasaki PI, Henderson B (1986) HLA typing in amyotrophic lateral sclerosis. Arch Neurol 43(1):7

    Article  CAS  PubMed  Google Scholar 

  • Noureddine MA, Qin XJ, Oliveira SA, Skelly TJ, van der Walt J, Hauser MA, Pericak-Vance MA, Vance JM, Li YJ (2005) Association between the neuron-specific RNA-binding protein ELAVL4 and Parkinson disease. Hum Genet 117(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ERJ, Lozano AM, Penn RD, Simpson RKJ, Stacy M, Wooten GF, ICV GDNF Study Group. Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB, Wilson CB, Perrin LH, Norris FH Jr (1976) Evidence for immune-complex formation in patients with amyotrophic lateral sclerosis. Lancet 2(7978):169–172

    Article  CAS  PubMed  Google Scholar 

  • Olson KE, Kosloski-Bilek LM, Anderson KJ, Diggs B, Clark B, Geldhill J, Shandler S, Mosley RL, Gendelman HE (2015) Selective VIP receptor agonists facilitate immune transformation for dopaminergic neuroprotection in MPTP-intoxicated mice. J Neurosci 35(50):16463–16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68(5):325–340

    Article  CAS  PubMed  Google Scholar 

  • Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM (2005) A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128:2665–2674

    Google Scholar 

  • Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H, Tsuji Y, Zhao J, Kyotani Y, Tanaka T, Takahashi R, Yoshizumi M (2013) S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep 3:2202. doi:10.1038/srep02202

    PubMed  PubMed Central  Google Scholar 

  • Palo J, Rissanen A, Jokinen E, Lähdevirta J, Salo O (1978) Kidney and skin biopsy in amyotrophic lateral sclerosis. Lancet 1(8076):1270

    Article  CAS  PubMed  Google Scholar 

  • Panzara MA, Gussoni E, Begovich AB, Murray RS, Zang YQ, Appel SH, Steinman L, Zhang J (1999) T cell receptor BV gene rearrangements in the spinal cords and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurobiol Dis 6(5):392–405

    Article  CAS  PubMed  Google Scholar 

  • Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL (2007) Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 101(3):749–756. doi:10.1111/j.1471-4159.2006.04365.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papuc E, Kurzepa J, Kurys-Denis E, Grabarska A, Krupski W, Rejdak K (2014) Humoral response against glial derived antigens in Parkinson’s disease. Neurosci Lett 566:77–81. doi:10.1016/j.neulet.2014.02.043

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, Park KI (2009) Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 41(7):487–500. doi:10.3858/emm.2009.41.7.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57(2):298–302

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Kriz J, Gravel M, Soucy G, Bareil C, Gravel C, Julien JP (2014) Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis. Mol Ther 22(3):498–510. doi:10.1038/mt.2013.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrias LM, Klaver AC, Coffey MP, Loeffler DA (2010) Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol 161(3):527–535. doi:10.1111/j.1365-2249.2010.04214.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104(6–7):661–677

    Article  CAS  PubMed  Google Scholar 

  • Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44(5):819–824

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Xie L, Stevenson FF, Melov S, Di Monte DA, Andersen JK (2006) Nigrostriatal dopaminergic neurodegeneration in the weaver mouse is mediated via neuroinflammation and alleviated by minocycline administration. J Neurosci 26:11644–11651

    Google Scholar 

  • Peng YS, Lai PL, Peng S, Wu HC, Yu S, Tseng TY, Wang LF, Chu IM (2014) Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier. Int J Nanomedicine 9:3163–3174. doi:10.2147/IJN.S60465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38(7):960–968

    Article  CAS  PubMed  Google Scholar 

  • Pestronk A, Adams RN, Cornblath D, Kuncl RW, Drachman DB, Clawson L (1989) Patterns of serum IgM antibodies to GM1 and GD1a gangliosides in amyotrophic lateral sclerosis. Ann Neurol 25(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Petrozzi L, Lucetti C, Scarpato R, Gambaccini G, Trippi F, Bernardini S, Del Dotto P, Migliore L, Bonuccelli U (2002) Cytogenetic alterations in lymphocytes of Alzheimer’s disease and Parkinson’s disease patients. Neurol Sci 23(Suppl 2):S97–S98

    Article  PubMed  Google Scholar 

  • Pey P, Pearce RK, Kalaitzakis ME, Griffin WS, Gentleman SM (2014) Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun 2:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Poirier J, Dea D, Baccichet A, Thiffault C (1994) Superoxide dismutase expression in Parkinson’s disease. Ann N Y Acad Sci 238:116–120

    Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Pontieri FE, Ricci A, Pellicano C, Benincasa D, Buttarelli FR (2005) Minocycline in amyotrophic lateral sclerosis: a pilot study. Neurol Sci 26(4):285–287. doi:10.1007/s10072-005-0474-x

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Stokes BT, Whitacre CC (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45(4):349–363. doi:10.1002/(SICI)1097-4547(19960815)45:4<349::AID-JNR4>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Jones TB (2003) Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 24:13–17

    Google Scholar 

  • Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol 117(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • Prigione A, Isaias IU, Galbussera A, Brighina L, Begni B, Andreoni S, Pezzoli G, Antonini A, Ferrarese C (2009) Increased oxidative stress in lymphocytes from untreated Parkinson’s disease patients. Parkinsonism Relat Disord 15(4):327–328. doi:10.1016/j.parkreldis.2008.05.013

    Article  PubMed  Google Scholar 

  • Provinciali L, Laurenzi MA, Vesprini L, Giovagnoli AR, Bartocci C, Montroni M, Bagnarelli P, Clementi M, Varaldo PE (1988) Immunity assessment in the early stages of amyotrophic lateral sclerosis: a study of virus antibodies and lymphocyte subsets. Acta Neurol Scand 78(6):449–454

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A 93(10):4565–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullen AH, Demestre M, Howard RS, Orrell RW (2004) Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta Neuropathol (Berl) 107(1):35–46

    Article  CAS  Google Scholar 

  • Puttaparthi K, Wojcik C, Rajendran B, DeMartino GN, Elliott JL (2003) Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J Neurochem 87(4):851–860

    Article  CAS  PubMed  Google Scholar 

  • Quinn LP, Crook B, Hows ME, Vidgeon-Hart M, Chapman H, Upton N, Medhurst AD, Virley DJ (2008) The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br J Pharmacol 154(1):226–233. doi:10.1038/bjp.2008.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees JN, Florang VR, Anderson DG, Doorn JA (2007) Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem Res Toxicol 20(10):1536–1542

    Article  CAS  PubMed  Google Scholar 

  • Reksidler AB, Lima MM, Zanata SM, Machado HB, da Cunha C, Andreatini R, Tufik S, Vital MA (2007) The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesionedrats. Eur J Pharmacol 560:163–175

    Google Scholar 

  • Relja M (2004) 14. Pathophysiology and classification of neurodegenerative diseases. J Internat Fed Clin Chem Lab Med 15(3):1–3

    Google Scholar 

  • Reubi JC, Horisberger U, Kappeler A, Laissue JA (1998) Localization of receptors for vasoactive intestinal peptide, somatostatin, and substance P in distinct compartments of human lymphoid organs. Blood 92(1):191–197

    CAS  PubMed  Google Scholar 

  • Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res 60(11):3105–3112

    CAS  PubMed  Google Scholar 

  • Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL (2007) Neuroprotective activities of CD4+ CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82(5):1083–1094. doi:10.1189/jlb.0507296

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182(7):4137–4149. doi:10.4049/jimmunol.0803982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE (2010) Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271. doi:10.4049/jimmunol.0901852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62

    Article  CAS  PubMed  Google Scholar 

  • Sadeghian M, Marinova-Mutafchieva L, Broom L, Davis JB, Virley D, Medhurst AD, Dexter DT (2012) Full and partial peroxisome proliferation-activated receptor-gamma agonists, but not delta agonist, rescue of dopaminergic neurons in the 6-OHDA parkinsonian model is associated with inhibition of microglial activation and MMP expression. J Neuroimmunol 246(1–2):69–77. doi:10.1016/j.jneuroim.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  • Said SI (1976) Evidence for secretion of vasoactive intestinal peptide by tumours of pancreas, adrenal medulla, thyroid and lung: support for the unifying APUD concept. Clin Endocrinol (Oxf) 5 Suppl:201S–204S

    Article  CAS  Google Scholar 

  • Saleh IA, Zesiewicz T, Xie Y, Sullivan KL, Miller AM, Kuzmin-Nichols N, Sanberg PR, Garbuzova-Davis S (2009) Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. J Neuroimmunol 215(1–2):96–101. doi:10.1016/j.jneuroim.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  • Samii A, Etminan M, Wiens MO, Jafari S (2009) NSAID use and the risk of Parkinson’s disease: systematic review and meta-analysis of observational studies. Drugs Aging 26(9):769–779

    Article  CAS  PubMed  Google Scholar 

  • Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87(3):723–732. doi:10.1002/jnr.21878

    Article  CAS  PubMed  Google Scholar 

  • Saresella M, Piancone F, Tortorella P, Marventano I, Gatti A, Caputo D, Lunetta C, Corbo M, Rovaris M, Clerici M (2013) T helper-17 activation dominates the immunologic milieu of both amyotrophic lateral sclerosis and progressive multiple sclerosis. Clin Immunol 148(1):79–88. doi:10.1016/j.clim.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  • Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, Meza JL, Santamaria PM, Bertoni JM, Murman DL, Ali HH, Standaert DG, Mosley RL, Gendelman HE (2012) CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol 7(4):927–938. doi:10.1007/s11481-012-9402-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger A, Mandler M, Mattner F, Schmidt W (2012) Vaccination for Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S11–S13. doi:10.1016/S1353-8020(11)70006-2

    Article  PubMed  Google Scholar 

  • Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, Schurmann B, Zimmer A, Heneka MT (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci 25(34):7805–7812. doi:10.1523/JNEUROSCI.2038-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, Sardone V, Mitchell JC, Rogelj B, Rubinsztein DC, Shaw CE (2014) Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci 127(Pt 6):1263–1278. doi:10.1242/jcs.140087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Searles Nielsen S, Checkoway H, Criswell SR, Farin FM, Stapleton PL, Sheppard L, Racette BA (2015) Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders. Parkinsonism Relat Disord 21(4):355–360. doi:10.1016/j.parkreldis.2015.01.007

    Article  PubMed  Google Scholar 

  • Sela M, Mozes E (2004) Therapeutic vaccines in autoimmunity. Proc Natl Acad Sci U S A 101(Suppl 2):14586–14592. doi:10.1073/pnas.0404826101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VM, Jones KJ (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 19(11):1–5

    Google Scholar 

  • Serpe CJ, Coers S, Sanders VM, Jones KJ (2003) CD4+ T, but not CD8+ or B, lymphocytes mediate facial motoneuron survival after facial nerve transection. Brain Behav Immun 17(5):393–402. doi:10.1016/s0889-1591(03)00028-x

    Article  PubMed  Google Scholar 

  • Shaw PJ, Williams R (2000) Serum and cerebrospinal fluid biochemical markers of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1(Suppl 2):S61–S67

    Article  CAS  PubMed  Google Scholar 

  • Shi N, Kawano Y, Tateishi T, Kikuchi H, Osoegawa M, Ohyagi Y, Kira JI (2007) Increased IL-13-producing T cells in ALS: Positive correlations with disease severity and progression rate. J Neuroimmunol 182(1–2):232–235

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Bradner J, Bammler TK, Eaton DL, Zhang J, Ye Z, Wilson AM, Montine TJ, Pan C, Zhang J (2009) Identification of glutathione S-transferase pi as a protein involved in Parkinson disease progression. Am J Pathol 175(1):54–65. doi:10.2353/ajpath.2009.081019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibata N, Hirano A, Kobayashi M, Siddique T, Deng HX, Hung WY, Kato T, Asayama K (1996) Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropathol Exp Neurol 55(4):481–490

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Nagai R, Miyata S, Jono T, Horiuchi S, Hirano A, Kato S, Sasaki S, Asayama K, Kobayashi M (2000) Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta Neuropathol (Berl) 100(3):275–284

    Article  CAS  Google Scholar 

  • Shibata N, Kawaguchi-Niida M, Yamamoto T, Toi S, Hirano A, Kobayashi M (2008) Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology 28(4):387–398. doi:10.1111/j.1440-1789.2008.00890.x

    Article  PubMed  Google Scholar 

  • Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann Neurol 46(6):920–924

    Article  CAS  PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994a) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994b) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36(3):356–361

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, Simuni T, Elm J, Clark-Matott J, Graebner AK, Baker L, Dunlop SR, Emborg M, Kamp C, Morgan JC, Ross GW, Sharma S, Ravina B (2015) Peripheral biomarkers of Parkinson’s disease progression and pioglitazone effects. J Parkinsons Dis 5(4):731–736. doi:10.3233/JPD-150666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62(10):1758–1765

    Article  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Hamilton S, Hofmann F, Schneider T, Nastainczyk W, Birnbaumer L, Stefani E, Appel SH (1992) Serum antibodies to L-type calcium channels in patients with amyotrophic lateral sclerosis. N Engl J Med 327(24):1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Smith LM, Klaver AC, Coffey MP, Dang L, Loeffler DA (2012) Effects of intravenous immunoglobulin on alpha synuclein aggregation and neurotoxicity. Int Immunopharmacol 14(4):550–557. doi:10.1016/j.intimp.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  • Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S, Kosberg K, Shen J, Rockenstein E, Patrick C, Adame A, Gonzalez T, Sierks M, Masliah E (2014) ESCRT-mediated uptake and degradation of brain-targeted alpha-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther 22(10):1753–1767. doi:10.1038/mt.2014.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  • Steece-Collier K, Chambers LK, Jaw-Tsai SS, Menniti FS, Greenamyre JT (2000) Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol 163(1):239–243. doi:10.1006/exnr.2000.7374

    Article  CAS  PubMed  Google Scholar 

  • Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M, Ward C, Halliday GM (2012) Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol 252(1–2):95–99. doi:10.1016/j.jneuroim.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55(6):659–665

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2(8), e689. doi:10.1371/journal.pone.0000689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M, Takahashi D, Urashima M (2013) Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr 97(5):1004–1013. doi:10.3945/ajcn.112.051664

    Article  CAS  PubMed  Google Scholar 

  • Swanson C, Emborg M (2014) Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurol Res 36(7):634–646. doi:10.1179/1743132813Y.0000000305

    Article  CAS  PubMed  Google Scholar 

  • Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, Kemnitz JW, Johnson JA, Emborg ME (2011) The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 8:91. doi:10.1186/1742-2094-8-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson CR, Du E, Johnson DA, Johnson JA, Emborg ME (2013) Neuroprotective Properties of a Novel Non-Thiazoledinedione Partial PPAR- gamma Agonist against MPTP. PPAR Res 2013:582809. doi:10.1155/2013/582809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka M, Koike R, Kondo H, Tsuji S, Nagai H (1993) Lymphocyte subsets in amyotrophic lateral sclerosis with motor conduction block. Muscle Nerve 16(1):116–117

    CAS  PubMed  Google Scholar 

  • Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM (2013) Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288(21):15194–15210. doi:10.1074/jbc.M113.457408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Urushitani M, Inoue H, Koike M, Uchiyama Y, Komatsu M, Tanaka K, Yamazaki M, Abe M, Misawa H, Sakimura K, Ito H, Takahashi R (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287(51):42984–42994. doi:10.1074/jbc.M112.417600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C (1999) Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with sporadic form of amyotrophic lateral sclerosis. Neurosci Lett 260(3):204–206

    Article  CAS  PubMed  Google Scholar 

  • Ton TG, Heckbert SR, Longstreth WT Jr, Rossing MA, Kukull WA, Franklin GM, Swanson PD, Smith-Weller T, Checkoway H (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord 21(7):964–969. doi:10.1002/mds.20856

    Article  PubMed  Google Scholar 

  • Toyokuni S, Uchida K, Okamoto K, Hattori-Nakakuki Y, Hiai H, Stadtman ER (1994) Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci U S A 91(7):2616–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troost D, Van den Oord JJ, Vianney de Jong JM (1990) Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 16(5):401–410

    Article  CAS  PubMed  Google Scholar 

  • Troost D, Das PK, van den Oord JJ, Louwerse ES (1992) Immunohistological alterations in muscle of patients with amyotrophic lateral sclerosis: mononuclear cell phenotypes and expression of MHC products. Clin Neuropathol 11(3):115–120

    CAS  PubMed  Google Scholar 

  • Tsai CP, Lin FC, Lee JK, Lee CT (2015) Aspirin use associated with amyotrophic lateral sclerosis: a total population-based case-control study. J Epidemiol 25(2):172–177. doi:10.2188/jea.JE20140070

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsou YH, Shih CT, Ching CH, Huang JY, Jen CJ, Yu L, Kuo YM, Wu FS, Chuang JI (2015) Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol 263:50–62. doi:10.1016/j.expneurol.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  • Tuncel N, Korkmaz OT, Tekin N, Sener E, Akyuz F, Inal M (2012) Antioxidant and anti-apoptotic activity of vasoactive intestinal peptide (VIP) against 6-hydroxy dopamine toxicity in the rat corpus striatum. J Mol Neurosci 46(1):51–57. doi:10.1007/s12031-011-9618-z

    Article  CAS  PubMed  Google Scholar 

  • Uchitel OD, Scornik F, Protti DA, Fumberg CG, Alvarez V, Appel SH (1992) Long-term neuromuscular dysfunction produced by passive transfer of amyotrophic lateral sclerosis immunoglobulins. Neurology 42(11):2175–2180

    Article  CAS  PubMed  Google Scholar 

  • Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104(7):2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I (2010) Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res 88(4):784–797. doi:10.1002/jnr.22243

    CAS  PubMed  Google Scholar 

  • van Blitterswijk M, Gulati S, Smoot E, Jaffa M, Maher N, Hyman BT, Ivinson AJ, Scherzer CR, Schoenfeld DA, Cudkowicz ME, Brown RH Jr, Bosco DA (2011) Anti-superoxide dismutase antibodies are associated with survival in patients with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(6):430–438. doi:10.3109/17482968.2011.585163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vassiliou E, Jiang X, Delgado M, Ganea D (2001) TH2 lymphocytes secrete functional VIP upon antigen stimulation. Arch Physiol Biochem 109(4):365–368

    Article  CAS  PubMed  Google Scholar 

  • Vasu C, Dogan RN, Holterman MJ, Prabhakar BS (2003) Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobulin-specific CD4+/CD25+ T cells and suppresses experimental autoimmune thyroiditis. J Immunol 170(11):5511–5522

    Article  CAS  PubMed  Google Scholar 

  • Voice JK, Grinninger C, Kong Y, Bangale Y, Paul S, Goetzl EJ (2003) Roles of vasoactive intestinal peptide (VIP) in the expression of different immune phenotypes by wild-type mice and T cell-targeted type II VIP receptor transgenic mice. J Immunol 170(1):308–314

    Article  CAS  PubMed  Google Scholar 

  • Wahner AD, Bronstein JM, Bordelon YM, Ritz B (2007) Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology 69(19):1836–1842

    Article  CAS  PubMed  Google Scholar 

  • Wakeman DR, Redmond DE Jr, Dodiya HB, Sladek JR Jr, Leranth C, Teng YD, Samulski RJ, Snyder EY (2014) Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target. Stem Cells Transl Med 3(6):692–701. doi:10.5966/sctm.2013-0208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z (2004) Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem 279(19):19948–19954

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Simmons Z, Liu W, Boyer PJ, Connor JR (2006) Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph Lateral Scler 7(4):201–210

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fan H, Ying Z, Li B, Wang H, Wang G (2010) Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett 469(1):112–116. doi:10.1016/j.neulet.2009.11.055

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Lee CL, Chen SY, Lin KH, Tsai CP (2011) Glatiramer acetate could be a hypothetical therapeutic agent for neuromyelitis optica. Med Hypotheses 76(6):820–822. doi:10.1016/j.mehy.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Xing GH, Hong B, Li XM, Zou Y, Zhang XJ, Dong MX (2014) Gastrodin prevents motor deficits and oxidative stress in the MPTP mouse model of Parkinson’s disease: involvement of ERK1/2-Nrf2 signaling pathway. Life Sci 114(2):77–85. doi:10.1016/j.lfs.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8(6):933–941

    Article  CAS  PubMed  Google Scholar 

  • Waters CH, Miller CA (1994) Autosomal dominant Lewy body parkinsonism in a four-generation family. Ann Neurol 35(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013

    Article  CAS  PubMed  Google Scholar 

  • Weiduschat N, Mao X, Hupf J, Armstrong N, Kang G, Lange DJ, Mitsumoto H, Shungu DC (2014) Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett 570:102–107. doi:10.1016/j.neulet.2014.04.020

    Article  CAS  PubMed  Google Scholar 

  • Wong NK, Strong MJ (1998) Nitric oxide synthase expression in cervical spinal cord in sporadic amyotrophic lateral sclerosis. Eur J Cell Biol 77(4):338–343

    Article  CAS  PubMed  Google Scholar 

  • Woo E, Nightingale S, Dick DJ, Walls TJ, French JM, Bates D (1986) A study of histocompatibility antigens in patients with motor neuron disease in the northern region of England. J Neurol Neurosurg Psychiatry 49(4):435–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100(10):6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DC, Re DB, Nagai M, Ischiropoulos H, Przedborski S (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A 103(32):12132–12137. doi:10.1073/pnas.0603670103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Kajitani K, Dan Y, Furuichi M, Ohno M, Sakumi K, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ 13(4):551–563. doi:10.1038/sj.cdd.4401788

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Yang YP, Mao CJ, Liu L, Zheng HF, Hu LF, Liu CF (2013) Crosstalk between the proteasome system and autophagy in the clearance of alpha-synuclein. Acta Pharmacol Sin 34(5):674–680. doi:10.1038/aps.2013.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 101(29):10810–10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93(7):2696–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitone SA, Hammad LN, Farag NE (2013) Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice. Pharmacol Rep 65(5):1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154(5):1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Shin EJ, Wang T, Lee PH, Pang H, Wie MB, Kim WK, Kim SJ, Huang WH, Wang Y, Zhang W, Hong JS, Kim HC (2006) 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J 20:2496–2511

    Google Scholar 

  • Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateralsclerosis in mice. Nature 417:74–78

    Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the National Institutes for Health grants P01 DA028555, R01 NS036126, P01 NS031492 2R01 NS034239, P01 MH064570, P01 NS043985, P30 MH062261 and R01 AG043540 to H.E.G.; R21 NS049264, R01 NS070190 to R.L.M.; DOD Grant 421-20-09A to H.E.G.; separate grants from the Michael J. Fox Foundation to H.E.G. and to R.L.M.; and in part by the University of Nebraska Foundation which includes individual donations from Carol Swarts, Frances and Louie Blumkin, and the Vice Chancellor’s office of the University of Nebraska Medical Center for Core Facility Developments. We gratefully acknowledge the work of Ashley Reynolds, MD, PhD, and David K. Stone MD, PhD for their authoritative input and work as authors of the first edition version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Mosley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schutt, C., Gendelman, H.E., Mosley, R.L. (2017). Immunotherapies for Movement Disorders: Parkinson’s Disease and Amyotrophic Lateral Sclerosis. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_46

Download citation

Publish with us

Policies and ethics