Skip to main content

Stem Cells and Neurogenesis for Brain Development, Degeneration and Therapy

  • Chapter
  • First Online:
Neuroimmune Pharmacology

Abstract

Neural stem cells and neurogenesis are a constitutive part of brain development and homeostasis. Importantly, function of neural stem cells and neurogenesis is how a healthy brain is defined. Decline number of neural stem cells and impaired neurogenesis are observed during aging and neurodegenerative disorders. Therefore, research in the past decades has generated great interest in the understanding of neural stem cells and neurogenesis. Many immunological and pharmacological therapeutic approaches are developed based on this research. In the current chapter, we introduce different types of stem cells relevant to the health and diseases of the nervous system. We discuss critical molecules and cell types involved in adult neurogenesis and how this research can be used to promote neural regeneration and repair during diseases. Additionally, we introduce an exciting new avenue of stem cell therapy based on somatic cell reprogramming strategy and discuss its potential applications in various neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20(8):2896–2903

    CAS  PubMed  Google Scholar 

  • Anderson DW, Neavin T, Smith JA, Schneider JS (2001) Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res 905(1–2):44–53

    Article  CAS  PubMed  Google Scholar 

  • Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134(1–2):115–122

    Article  CAS  PubMed  Google Scholar 

  • Andre EM, Pensado A, Resnier P, Braz L, Rosa da Costa AM, Passirani C, Sanchez A, Montero-Menei CN (2016) Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy. Int J Pharm 497(1–2):255–267. doi:10.1016/j.ijpharm.2015.11.020

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    Article  CAS  PubMed  Google Scholar 

  • Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129(18):4249–4260

    CAS  PubMed  Google Scholar 

  • Bai F, Bergeron M, Nelson DL (2003) Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44(8):1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579. doi:10.1111/j.1460-9568.2004.03486.x

    Article  PubMed  Google Scholar 

  • Baker SA, Baker KA, Hagg T (2005) D3 dopamine receptors do not regulate neurogenesis in the subventricular zone of adult mice. Neurobiol Dis 18(3):523–527. doi:10.1016/j.nbd.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  • Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F, Fibbe WE (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110(7):2764–2767. doi:10.1182/blood-2007-04-087056

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460

    Article  CAS  PubMed  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295(5563):2282–2285

    Article  CAS  PubMed  Google Scholar 

  • Bergsland M, Covacu R, Perez Estrada C, Svensson M, Brundin L (2014) Nitric oxide-induced neuronal to glial lineage fate-change depends on NRSF/REST function in neural progenitor cells. Stem Cells 32(9):2539–2549. doi:10.1002/stem.1749

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7):517–530

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36(5):778–786. doi:10.1002/ana.410360515

    Article  CAS  PubMed  Google Scholar 

  • Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24(35):7623–7631. doi:10.1523/JNEUROSCI.1999-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR (2012) Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther 7(6):407–414

    Article  CAS  PubMed  Google Scholar 

  • Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38(3):145–157. doi:10.1016/j.tins.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  • Bossio C, Mastrangelo R, Morini R, Tonna N, Coco S, Verderio C, Matteoli M, Bianco F (2013) A simple method to generate adipose stem cell-derived neurons for screening purposes. J Mol Neurosci 51(2):274–281. doi:10.1007/s12031-013-9985-8

    Article  CAS  PubMed  Google Scholar 

  • Bowles AC, Scruggs BA, Bunnell BA (2014) Mesenchymal stem cell-based therapy in a mouse model of experimental autoimmune encephalomyelitis (EAE). Methods Mol Biol 1213:303–319. doi:10.1007/978-1-4939-1453-1_25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazel CY, Nunez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131(1):55–65. doi:10.1016/j.neuroscience.2004.10.038

    Article  CAS  PubMed  Google Scholar 

  • Brewer KL, Bethea JR, Yezierski RP (1999) Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol 159(2):484–493. doi:10.1006/exnr.1999.7173

    Article  CAS  PubMed  Google Scholar 

  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285(5428):754–756

    Article  CAS  PubMed  Google Scholar 

  • Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227. doi:10.1038/nature10284

    Article  CAS  PubMed  Google Scholar 

  • Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131(9):2173–2181. doi:10.1242/dev.01103

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36(2):287–306

    Article  CAS  PubMed  Google Scholar 

  • Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12(7):606–608

    Article  CAS  PubMed  Google Scholar 

  • Carvey PM, McGuire SO, Ling ZD (2001) Neuroprotective effects of D3 dopamine receptor agonists. Parkinsonism Relat Disord 7(3):213–223

    Article  PubMed  Google Scholar 

  • Cayuso J, Marti E (2005) Morphogens in motion: growth control of the neural tube. J Neurobiol 64(4):376–387. doi:10.1002/neu.20169

    Article  PubMed  Google Scholar 

  • Chen J, Magavi SS, Macklis JD (2004) Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci U S A 101(46):16357–16362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, Liu YJ, Tsai CH, Chen JC, Cho DY, Lee CC, Shyu WC (2014) Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell Transplant 23(12):1599–1612. doi:10.3727/096368914X678562

    PubMed  Google Scholar 

  • Chen Q, Zhang M, Li Y, Xu D, Wang Y, Song A, Zhu B, Huang Y, Zheng JC (2015) CXCR7 mediates neural progenitor cells migration to CXCL12 independent of CXCR4. Stem Cells 33(8):2574–2585. doi:10.1002/stem.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258(2):319–333

    Article  CAS  PubMed  Google Scholar 

  • Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M, Leo D, Alexopoulou D, Dell’Anno MT, Ciabatti E, Orlando M, Studer M, Dahl A, Gainetdinov RR, Taverna S, Benfenati F, Broccoli V (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17(6):719–734. doi:10.1016/j.stem.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  • Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du MQ, Luan SL, Altmann DR, Thompson AJ, Compston A, Scott MA, Miller DH, Chandran S (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 11(2):150–156. doi:10.1016/S1474-4422(11)70305-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtis MA, Penney EB, Pearson AG, van Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A 100(15):9023–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  • Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, Weiner H, Ruiz i Altaba A (2001) The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128(24):5201–5212

    CAS  PubMed  Google Scholar 

  • Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. doi:10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derakhshanrad N, Saberi H, Tayebi Meybodi K, Taghvaei M, Arjmand B, Aghayan HR, Kohan AH, Haghpanahi M, Rahmani S (2015) Case Report: combination therapy with mesenchymal stem cells and granulocyte-colony stimulating factor in a case of spinal cord injury. Basic Clin Neurosci 6(4):299–305

    PubMed  PubMed Central  Google Scholar 

  • Di Giorgi Gerevini VD, Caruso A, Cappuccio I, Ricci Vitiani L, Romeo S, Della Rocca C, Gradini R, Melchiorri D, Nicoletti F (2004) The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res Dev Brain Res 150(1):17–22

    Article  PubMed  CAS  Google Scholar 

  • Diez-Tejedor E, Gutierrez-Fernandez M, Martinez-Sanchez P, Rodriguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23(10):2694–2700. doi:10.1016/j.jstrokecerebrovasdis.2014.06.011

    Article  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399(6738 Suppl):A32–A39

    Article  CAS  PubMed  Google Scholar 

  • Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50(3):258–269

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100(23):13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley JG, Hagg T (2003) Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol 183(2):298–310

    Article  CAS  PubMed  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75(5):321–341

    Article  CAS  PubMed  Google Scholar 

  • Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24(38):8354–8365. doi:10.1523/JNEUROSCI.2751-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97(26):14686–14691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G (2015) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/caspase-1 axis in adult neural stem cells. Mol Neurobiol. doi:10.1007/s12035-015-9620-5

    Google Scholar 

  • Feng Y, Walsh CA (2001) Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosci 2(6):408–416. doi:10.1038/35077559

    Article  CAS  PubMed  Google Scholar 

  • Ferguson KL, Slack RS (2003) Growth factors: can they promote neurogenesis? Trends Neurosci 26(6):283–285

    Article  CAS  PubMed  Google Scholar 

  • Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141(11):2182–2194. doi:10.1242/dev.090571

    Article  CAS  PubMed  Google Scholar 

  • Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101(27):10177–10182. doi:10.1073/pnas.0401229101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolov AA, Bryukhovetskiy AS (2012) Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplant 21(Suppl 1):S49–S55. doi:10.3727/096368912X633761

    Article  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Ure K, Ding P, Nashaat M, Yuan L, Ma J, Hammer RE, Hsieh J (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31(26):9772–9786. doi:10.1523/JNEUROSCI.1604-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • George PM, Steinberg GK (2015) Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87(2):297–309. doi:10.1016/j.neuron.2015.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong W, Han Z, Zhao H, Wang Y, Wang J, Zhong J, Wang B, Wang S, Wang Y, Sun L, Han Z (2012) Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. Cell Transplant 21(1):207–216. doi:10.3727/096368911X586756

    Article  PubMed  Google Scholar 

  • Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, Bjorklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15(5):653–665. doi:10.1016/j.stem.2014.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2):249–257. doi:10.1016/j.stem.2010.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14(2):188–202. doi:10.1016/j.stem.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  • Hagg T (2005) Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 28(11):589–595. doi:10.1016/j.tins.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA, Perez-Torres E, Brownell AL, Schumacher JM, Spealman RD, Isacson O (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274. doi:10.1016/j.stem.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han DW, Greber B, Wu G, Tapia N, Arauzo-Bravo MJ, Ko K, Bernemann C, Stehling M, Scholer HR (2011) Direct reprogramming of fibroblasts into epiblast stem cells. Nat Cell Biol 13(1):66–71. doi:10.1038/ncb2136

    Article  CAS  PubMed  Google Scholar 

  • Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472. doi:10.1016/j.stem.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107(36):15921–15926. doi:10.1073/pnas.1010209107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrist A, Beech RD, King SL, Zanardi A, Cleary MA, Caldarone BJ, Eisch A, Zoli M, Picciotto MR (2004) Alteration of hippocampal cell proliferation in mice lacking the beta 2 subunit of the neuronal nicotinic acetylcholine receptor. Synapse 54(4):200–206. doi:10.1002/syn.20081

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  CAS  PubMed  Google Scholar 

  • Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524

    Article  CAS  PubMed  Google Scholar 

  • Hoehn BD, Palmer TD, Steinberg GK (2005) Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke 36(12):2718–2724

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisen J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353. doi:10.1038/nn1405

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735. doi:10.1038/nn1265

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  PubMed  Google Scholar 

  • Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407(6807):963–970

    Article  CAS  PubMed  Google Scholar 

  • Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62(10):1100–1108. doi:10.1007/s00018-005-4552-2

    Article  CAS  PubMed  Google Scholar 

  • Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278(38):35959–35967. doi:10.1074/jbc.M302804200

    Article  CAS  PubMed  Google Scholar 

  • Ji JF, He BP, Dheen ST, Tay SS (2004) Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neurosci Lett 355(3):236–240

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3:668. doi:10.1038/ncomms1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101(1):343–347

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306(2):343–348. doi:10.1016/j.yexcr.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  • Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65(6):753–761. doi:10.1001/archneur.65.6.753

    Article  PubMed  Google Scholar 

  • Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634. doi:10.1126/science.1251141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22(1-2):56–67

    Article  CAS  PubMed  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101(32):11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinsons Dis 1(4):395–412. doi:10.3233/JPD-2011-11070

    CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. doi:10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418(6893):50–56

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653. doi:10.1038/nature08436

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843. doi:10.1073/pnas.1103113108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25(24):5815–5823. doi:10.1523/JNEUROSCI.1120-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Mishina M, Sugiyama H (2003) Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci Res 47(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, Luster AD (2001) SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128(11):1971–1981

    CAS  PubMed  Google Scholar 

  • Krathwohl MD, Kaiser JL (2004) Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Kruger GM, Morrison SJ (2002) Brain repair by endogenous progenitors. Cell 110(4):399–402

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni VA, Jha S, Vaidya VA (2002) Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci 16(10):2008–2012

    Article  PubMed  Google Scholar 

  • Kwon YK (2002) Effect of neurotrophic factors on neuronal stem cell death. J Biochem Mol Biol 35(1):87–93

    CAS  PubMed  Google Scholar 

  • Le Blanc K, Ringden O (2006) Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 18(5):586–591. doi:10.1016/j.coi.2006.07.004

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(Pt 7):1365–1379

    Article  PubMed  Google Scholar 

  • Li JF, Zhang DJ, Geng T, Chen L, Huang H, Yin HL, Zhang YZ, Lou JY, Cao B, Wang YL (2014) The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 23(Suppl 1):S113–S122. doi:10.3727/096368914X685005

    Article  PubMed  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247(4942):574–577

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50. doi:10.1038/nm1064

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan AC, Zhang D, Benke TA, Sladek JR, Zahniser NR, Li CY (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res 22(2):321–332. doi:10.1038/cr.2011.181

    Article  CAS  PubMed  Google Scholar 

  • Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. doi:10.1038/ncomms3183

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Huang Q, Li F, Li CY (2014) Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression. Sci China Life Sci 57(9):867–875. doi:10.1007/s11427-014-4730-2

    Article  CAS  PubMed  Google Scholar 

  • Liu ML, Zang T, Zhang CL (2016) Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep 14(1):115–128. doi:10.1016/j.celrep.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  • Lobjois V, Benazeraf B, Bertrand N, Medevielle F, Pituello F (2004) Specific regulation of cyclins D1 and D2 by FGF and Shh signaling coordinates cell cycle progression, patterning, and differentiation during early steps of spinal cord development. Dev Biol 273(2):195–209. doi:10.1016/j.ydbio.2004.05.031

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  • Logan A, Green J, Hunter A, Jackson R, Berry M (1999) Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-beta2. Eur J Neurosci 11(7):2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34(6):945–960

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Su WJ, Yue W, Ge X, Su F, Pei G, Ma L (2001) Attenuation of morphine dependence and withdrawal in rats by venlafaxine, a serotonin and noradrenaline reuptake inhibitor. Life Sci 69(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M (2012) Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A 109(7):2527–2532. doi:10.1073/pnas.1121003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk KC, Kennedy TE, Sadikot AF (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci 23(6):2239–2250

    CAS  PubMed  Google Scholar 

  • Luo Y, Cai J, Xue H, Miura T, Rao MS (2005) Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord. J Neurochem 93(2):452–462. doi:10.1111/j.1471-4159.2005.03049.x

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, Shen M, Zong L, Lyu G, Zhao Y, Ye T, Gu J, Tao W, Lu Z, Grummt I (2013) NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 31(7):1278–1286. doi:10.1002/stem.1374

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF 1 deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39(6):937–950

    Article  CAS  PubMed  Google Scholar 

  • Mackowiak M, O'Neill MJ, Hicks CA, Bleakman D, Skolnick P (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology 43(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405(6789):951–955

    Article  CAS  PubMed  Google Scholar 

  • Magnus T, Rao MS (2005) Neural stem cells in inflammatory CNS diseases: mechanisms and therapy. J Cell Mol Med 9(2):303–319

    Article  CAS  PubMed  Google Scholar 

  • Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, Donelli A, Lugaresi A, Di Bartolomeo P, Rottoli MR, Rambaldi A, Amato MP, Massacesi L, Di Gioia M, Vuolo L, Curro D, Roccatagliata L, Filippi M, Aguglia U, Iacopino P, Farge D, Saccardi R (2015) Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84(10):981–988. doi:10.1212/WNL.0000000000001329

    Article  CAS  PubMed  Google Scholar 

  • Marchetti B, Abbracchio MP (2005) To be or not to be (inflamed)—is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 26(10):517–525. doi:10.1016/j.tips.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153. doi:10.1038/nature08287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27(10):589–594. doi:10.1016/j.tins.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Matyszak MK (1998) Inflammation in the CNS: balance between immunological privilege and immune responses. Prog Neurobiol 56(1):19–35

    Article  CAS  PubMed  Google Scholar 

  • McConnell SK (1995) Strategies for the generation of neuronal diversity in the developing central nervous system. J Neurosci 15(11):6987–6998

    CAS  PubMed  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276(5309):66–71

    Article  CAS  PubMed  Google Scholar 

  • Mehta V, Hong M, Spears J, Mendez I (1998) Enhancement of graft survival and sensorimotor behavioral recovery in rats undergoing transplantation with dopaminergic cells exposed to glial cell line-derived neurotrophic factor. J Neurosurg 88(6):1088–1095. doi:10.3171/jns.1998.88.6.1088

    Article  CAS  PubMed  Google Scholar 

  • Mendonca MV, Larocca TF, de Freitas Souza BS, Villarreal CF, Silva LF, Matos AC, Novaes MA, Bahia CM, de Oliveira Melo Martinez AC, Kaneto CM, Furtado SB, Sampaio GP, Soares MB, dos Santos RR (2014) Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther 5(6):126. doi:10.1186/scrt516

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26(6):939–946. doi:10.1016/j.neurobiolaging.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  • Monaghan D, Bridges R, Cotman C (1989) The excitatory amino acid receptors. Annu Rev Pharmacol Toxicol 29:365–402

    Article  CAS  PubMed  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ (2001) Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol 13(6):666–672

    Article  CAS  PubMed  Google Scholar 

  • Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, Guzman R, Wyss-Coray T (2012) Neural progenitor cells regulate microglia functions and activity. Nat Neurosci 15(11):1485–1487. doi:10.1038/nn.3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432. doi:10.1038/nrn845

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T (2001) Neurotrophin secretion from cultured microglia. J Neurosci Res 65(4):322–331

    Article  CAS  PubMed  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110(4):429–441

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280. doi:10.1016/j.stem.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22. doi:10.1038/nrn2495

    Article  CAS  PubMed  Google Scholar 

  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49(3):385–396. doi:10.1002/glia.20127

    Article  PubMed  Google Scholar 

  • O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES (2004) AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 3(3):181–194

    Article  PubMed  Google Scholar 

  • Orgogozo V, Schweisguth F, Bellaiche Y (2004) Slit-Robo signalling prevents sensory cells from crossing the midline in Drosophila. Mech Dev 121:427–436

    Google Scholar 

  • Overstreet Wadiche L, Bromberg DA, Bensen AL, Westbrook GL (2005) GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94(6):4528–4532. doi:10.1152/jn.00633.2005

    Article  PubMed  CAS  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9):715–727. doi:10.1038/nrn919

    Article  CAS  PubMed  Google Scholar 

  • Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT (2014) Identification of distinct ChAT(+) neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci 17(7):934–942. doi:10.1038/nn.3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132(2):335–344. doi:10.1242/dev.01567

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8(6):389–404

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494

    Article  CAS  PubMed  Google Scholar 

  • Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9(4):261–272

    Article  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21(17):6706–6717

    CAS  PubMed  Google Scholar 

  • Pende M, Holtzclaw LA, Curtis JL, Russell JT, Gallo V (1994) Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci U S A 91(8):3215–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Huang Y, Rose J, Erichsen D, Herek S, Fujii N, Tamamura H, Zheng J (2004) Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J Neurosci Res 76(1):35–50

    Article  CAS  PubMed  Google Scholar 

  • Perez Estrada C, Covacu R, Sankavaram SR, Svensson M, Brundin L (2014) Oxidative stress increases neurogenesis and oligodendrogenesis in adult neural progenitor cells. Stem Cells Dev 23(19):2311–2327. doi:10.1089/scd.2013.0452

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Plendl J, Stierstorfer B, Sinowatz F (1999) Growth factors and their receptors in the olfactory system. Anat Histol Embryol 28(2):73–79

    Article  CAS  PubMed  Google Scholar 

  • Pons S, Trejo JL, Martinez-Morales JR, Marti E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128(9):1481–1492

    CAS  PubMed  Google Scholar 

  • Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, Singh KK, Nair V, Sarkar RS, Gorthi SP, Hassan KM, Prabhakar S, Marwaha N, Khandelwal N, Misra UK, Kalita J, Nityanand S (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 45(12):3618–3624. doi:10.1161/STROKEAHA.114.007028

    Article  CAS  PubMed  Google Scholar 

  • Qiao LY, Huang FJ, Zhao M, Xie JH, Shi J, Wang J, Lin XZ, Zuo H, Wang YL, Geng TC (2014) A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant 23(Suppl 1):S65–S72. doi:10.3727/096368914X684961

    Article  PubMed  Google Scholar 

  • Qin J, Ma X, Qi H, Song B, Wang Y, Wen X, Wang QM, Sun S, Li Y, Zhang R, Liu X, Hou H, Gong G, Xu Y (2015) Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One 10(6):e0129881. doi:10.1371/journal.pone.0129881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, Liu J (2004) Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 55(3):381–389. doi:10.1002/ana.10853

    Article  PubMed  Google Scholar 

  • Ramer MS, Priestley JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403(6767):312–316. doi:10.1038/35002084

    Article  CAS  PubMed  Google Scholar 

  • Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ (2004) Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol 473(1):1–15. doi:10.1002/cne.20049

    Article  PubMed  Google Scholar 

  • Rao MS, Mayer-Proschel M (2000) Precursor cells for transplantation. Prog Brain Res 128:273–292. doi:10.1016/S0079-6123(00)28025-4

    Article  CAS  PubMed  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4(7):814–821

    Article  CAS  PubMed  Google Scholar 

  • Rietze R, Poulin P, Weiss S (2000) Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 424(3):397–408

    Article  CAS  PubMed  Google Scholar 

  • Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109. doi:10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri M, Riboldi G, Brajkovic S, Bucchia M, Bresolin N, Comi GP, Corti S (2014) Induced neural stem cells: methods of reprogramming and potential therapeutic applications. Prog Neurobiol 114:15–24. doi:10.1016/j.pneurobio.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Sadikot AF, Burhan AM, Bélanger MC, Sasseville R (1998) NMDA receptor antagonists influence early development of GABAergic interneurons in the mammalian striatum. Brain Res Dev Brain Res 105(1):35–42

    Article  CAS  Google Scholar 

  • Sawamoto K, Nakao N, Kakishita K, Ogawa Y, Toyama Y, Yamamoto A, Yamaguchi M, Mori K, Goldman SA, Itakura T, Okano H (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 21(11):3895–3903

    CAS  PubMed  Google Scholar 

  • Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 23(4):385–394

    Article  PubMed  Google Scholar 

  • Shimamura K, Martinez S, Puelles L, Rubenstein JL (1997) Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev Neurosci 19(1):88–96

    Article  CAS  PubMed  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410(6826):372–376. doi:10.1038/35066584

    Article  CAS  PubMed  Google Scholar 

  • Simpson KL, Fisher TM, Waterhouse BD, Lin RC (1998) Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 399(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56(1):131–137. doi:10.1016/S0091-3057(96)00169-4

    Article  CAS  PubMed  Google Scholar 

  • Snyder BJ, Olanow CW (2005) Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18(4):376–385

    Article  CAS  PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227. doi:10.1016/j.cell.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stilley CS, Ryan CM, Kondziolka D, Bender A, DeCesare S, Wechsler L (2004) Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke. Neurology 63(7):1320–1322

    Article  CAS  PubMed  Google Scholar 

  • Storch A, Sabolek M, Milosevic J, Schwarz SC, Schwarz J (2004) Midbrain-derived neural stem cells: from basic science to therapeutic approaches. Cell Tissue Res 318(1):15–22. doi:10.1007/s00441-004-0923-5

    Article  PubMed  Google Scholar 

  • Streit WJ (2002) Microglia and the response to brain injury. Ernst Schering Res Found Workshop 39:11–24

    Google Scholar 

  • Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat Neurosci 1(4):290–295. doi:10.1038/1105

    Article  CAS  PubMed  Google Scholar 

  • Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20(19):7377–7383

    CAS  PubMed  Google Scholar 

  • Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, Hollt V, Schulz S (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23(12):5123–5130

    CAS  PubMed  Google Scholar 

  • Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ (2015) Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 16(5):10934–10951. doi:10.3390/ijms160510934

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Yamagishi N, Oboshi K, Kageyama S, Hirayama H, Minamihashi A, Sasaki M, Wijayagunawardane MP (2005) A female pseudohermaphrodite Holstein heifer with gonadal mosaicism. Theriogenology 63(1):60–71. doi:10.1016/j.theriogenology.2004.03.010

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089. doi:10.1038/nprot.2007.418

    Article  CAS  PubMed  Google Scholar 

  • Tauber SC, Stadelmann C, Spreer A, Bruck W, Nau R, Gerber J (2005) Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis. J Neuropathol Exp Neurol 64(9):806–815

    Article  CAS  PubMed  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  CAS  PubMed  Google Scholar 

  • Theka I, Caiazzo M, Dvoretskova E, Leo D, Ungaro F, Curreli S, Manago F, Dell'Anno MT, Pezzoli G, Gainetdinov RR, Dityatev A, Broccoli V (2013) Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl Med 2(6):473–479. doi:10.5966/sctm.2012-0133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479. doi:10.1016/j.stem.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Ambroz RJ, Sun L, Wang Y, Ma K, Chen Q, Zhu B, Zheng JC (2012) Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Curr Mol Med 12(2):126–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong CK, Alvarez-Buylla A (2014) SnapShot: adult neurogenesis in the V-SVZ. Neuron 81(1):220–220.e221. doi:10.1016/j.neuron.2013.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PB, Miller RJ (2005) HIV-1, chemokines and neurogenesis. Neurotox Res 8(1–2):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PB, Ren D, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76(1):20–34

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110(3):373–383

    Article  CAS  PubMed  Google Scholar 

  • Van Kampen JM, Robertson HA (2005) A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 136(2):381–386. doi:10.1016/j.neuroscience.2005.07.054

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 19(9):2377–2387. doi:10.1111/j.0953-816X.2004.03342.x

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Despres S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94. doi:10.1038/nature10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu TQ, Ling ZD, Ma SY, Robie HC, Tong CW, Chen EY, Lipton JW, Carvey PM (2000) Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine. J Neural Transm (Vienna) 107(2):159–176

    Article  CAS  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9(8):445–448

    Article  CAS  PubMed  Google Scholar 

  • Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29(2):181–189. doi:10.1016/j.mcn.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. doi:10.1016/j.stem.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9):387–393

    Article  CAS  PubMed  Google Scholar 

  • Wen PH, Shao X, Shao Z, Hof PR, Wisniewski T, Kelley K, Friedrich VL Jr, Ho L, Pasinetti GM, Shioi J, Robakis NK, Elder GA (2002) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10(1):8–19. doi:10.1006/nbdi.2002.0490

    Article  CAS  PubMed  Google Scholar 

  • Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108(6):1343–1359. doi:10.1111/j.1471-4159.2009.05886.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widera D, Holtkamp W, Entschladen F, Niggemann B, Zanker K, Kaltschmidt B, Kaltschmidt C (2004) MCP-1 induces migration of adult neural stem cells. Eur J Cell Biol 83(8):381–387

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y (2002) Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 5(12):1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32(8):1890–1896

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8(6):709–715. doi:10.1038/nn1475

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, Saito Y, Murayama S, Okano H, Mizuno Y, Mochizuki H (2005) Possibility for neurogenesis in substantia nigra of Parkinsonian brain. Ann Neurol 58(1):31–40. doi:10.1002/ana.20506

    Article  PubMed  Google Scholar 

  • Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 12(12):4793–4799

    CAS  PubMed  Google Scholar 

  • Zandi PP, Breitner JC (2001) Do NSAIDs prevent Alzheimer’s disease? And if so, why? The epidemiological evidence. Neurobiol Aging 22(6):811–817

    Article  CAS  PubMed  Google Scholar 

  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761. doi:10.1182/blood-2005-04-1496

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106(7):829–838. doi:10.1172/JCI9369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hoffmann F, He J, He X, Kankasa C, Ruprecht R, West JT, Orti G, Wood C (2005) Evolution of subtype C HIV-1 Env in a slowly progressing Zambian infant. Retrovirology 2:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100(13):7925–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y (2002) Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 5(8):719–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Xu D, Deng X, Chen Q, Huang Y, Peng H, Li Y, Jia B, Thoreson WB, Ding W, Ding J, Zhao L, Wang Y, Wavrin KL, Duan S, Zheng J (2012) CXCL12 enhances human neural progenitor cell survival through a CXCR7- and CXCR4-mediated endocytotic signaling pathway. Stem Cells 30(11):2571–2583. doi:10.1002/stem.1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Nicholas Whitney, Dr. Kang Tang, Dr. Myron Toews for the scientific editing of the previous edition of this book chapter; Julie Ditter, Lenal Bottoms, Myhanh Che, Johna Belling, and Robin Taylor for the outstanding administrative and secretarial support. This work was supported by grants from National Institutes of Health: R01 NS41858-01, 2R56NS041858-15A1 (JZ), and R03 NS094071-01 (YH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunlong Huang or Jialin C. Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peer, J., Zhang, H., Peng, H., Vance, K., Huang, Y., Zheng, J.C. (2017). Stem Cells and Neurogenesis for Brain Development, Degeneration and Therapy. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_15

Download citation

Publish with us

Policies and ethics