Skip to main content

Microglial Biology and Physiology

  • Chapter
  • First Online:
  • 2764 Accesses

Abstract

Microglia are resident cells of the brain involved in regulatory processes critical for development, maintenance of the neural environment, injury and repair. They originate from erythromyeloid progenitors (EMPs) in the yolk sac and develop in the forming CNS. Microglia serve as brain immune cells to orchestrate innate immune responses, however, they are distinct from other tissue macrophages due to their unique homeostatic phenotype and tight regulation by the CNS microenvironment. They exhibit multiple morphological phenotypes and functional profiles depending on their environment. Microglia actively survey the surrounding parenchyma and respond rapidly to changes such that any disruption to neural architecture or function can contribute to the loss in regulation of the microglia phenotype. Alterations in microglia functionality are involved in brain aging, as well as in neurodegenerative diseases. In many models of neurodegeneration and neurotoxicity, early events of synaptic degeneration and neuronal loss are accompanied by an inflammatory response including activation of microglia, perivascular monocytes, and recruitment of leukocytes. As the primary source for pro-inflammatory cytokines, microglia are implicated as pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. One key question in determining the consequence of neuroinflammation is whether the response is an initiating event or the consequence of tissue damage. Microglia execute varied tasks, not typical of those carried out by peripheral macrophages, which support optimal function of neurons and neuronal networks. Recent observations about microglia ontogeny combined with extensive gene expression profiling and emerged novel tools to study microglia biology allow us to characterize the variety of microglial phenotypes during development, homeostasis and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi:10.1146/annurev.immunol.17.1.593

    Article  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, McGeer PL (1990) Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35(2):151–159. doi:10.1002/(SICI)1098-2396(200002)35:2<151::AID-SYN8>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Amit I, Winter DR, Jung S (2015) The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 17(1):18–25. doi:10.1038/ni.3325

    Article  CAS  Google Scholar 

  • Andersson PB, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48(1):169–186

    Article  CAS  PubMed  Google Scholar 

  • Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C (2011) Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044. doi:10.1016/j.neurobiolaging.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  • Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46(4):957–961, discussion 961–952

    CAS  PubMed  Google Scholar 

  • Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14(7):677–685. doi:10.1038/ncb2502

    Article  CAS  PubMed  Google Scholar 

  • Baker CA, Martin D, Manuelidis L (2002) Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 76(21):10905–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balschun D, Randolf A, Pitossi F, Schneider H, Del Rey A, Besedovsky HO (2003) Hippocampal interleukin-1 beta gene expression during long-term potentiation decays with age. Ann N Y Acad Sci 992:1–8

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7(1):111–118. doi:10.1002/glia.440070117

    Article  CAS  PubMed  Google Scholar 

  • Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290

    Article  CAS  PubMed  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17(14):5297–5304

    CAS  PubMed  Google Scholar 

  • Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML (1994) Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 50(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG, Allan G (1997) Signal transduction and gene expression in the eye: a contemporary view of the pro-inflammatory, anti-inflammatory and modulatory roles of prostaglandins and other bioactive lipids. Surv Ophthalmol 41(Suppl 2):S23–S34

    Article  PubMed  Google Scholar 

  • Bear MF (1999) Homosynaptic long-term depression: a mechanism for memory? Proc Natl Acad Sci U S A 96(17):9457–9458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295(5563):2282–2285. doi:10.1126/science.1067859.295/5563/2282 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Becher B, Antel JP (1996) Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18(1):1–10. doi:10.1002/(SICI)1098-1136(199609)18:1<1::AID-GLIA1>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021–16026. doi:10.1073/pnas.0607423103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellini F, Viola G, Menegus AM, Toffano G, Bruni A (1990) Signalling mechanism in the lysophosphatidylserine-induced activation of mouse mast cells. Biochim Biophys Acta 1052(1):216–220

    Article  CAS  PubMed  Google Scholar 

  • Benacerraf B, McCluskey RT (1963) Methods of immunologic injury to tissues. Annu Rev Microbiol 17:263–284. doi:10.1146/annurev.mi.17.100163.001403

    Article  CAS  PubMed  Google Scholar 

  • Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113:E1738–E1746. doi:10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman JW, Guida MP, Warren J, Amat J, Brosnan CF (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156(8):3017–3023

    CAS  PubMed  Google Scholar 

  • Betmouni S, Perry VH, Gordon JL (1996) Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174(11):7268–7277

    Article  CAS  PubMed  Google Scholar 

  • Blais V, Rivest S (2003) Role of the innate immune response in the brain. Med Sci 19(10):981–987. doi:10.1051/medsci/20031910981

    Google Scholar 

  • Blevins G, Fedoroff S (1995) Microglia in colony-stimulating factor 1-deficient op/op mice. J Neurosci Res 40(4):535–544. doi:10.1002/jnr.490400412

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, Wilson B, Yang J, Hong JS, Veronesi B (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18(13):1618–1620. doi:10.1096/fj.04-1945fje

    CAS  PubMed  Google Scholar 

  • Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Harter P (1999) Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Bonifati V (2002) Deciphering Parkinson’s disease—PARK8. Lancet Neurol 1(2):83

    Article  PubMed  Google Scholar 

  • Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64(1):93–109. doi:10.1016/j.neuron.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Gotz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533. doi:10.1038/nn.2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ (1991) Complement receptors and phagocytosis. Curr Opin Immunol 3(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Bruttger J, Karram K, Wortge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y, Mack M, Pinteaux E, Muller W, Zipp F, Binder H, Bopp T, Prinz M, Jung S, Waisman A (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43(1):92–106. doi:10.1016/j.immuni.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  • Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2(6):419–426. doi:10.1038/nmeth762

    Article  CAS  PubMed  Google Scholar 

  • Buell GN, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE (1998) Gene structure and chromosomal localization of the human P2X7 receptor. Receptors Channels 5(6):347–354

    CAS  PubMed  Google Scholar 

  • Bulavina L, Szulzewsky F, Rocha A, Krabbe G, Robson SC, Matyash V, Kettenmann H (2013) NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signal 9(2):199–205. doi:10.1007/s11302-012-9339-y

    Article  CAS  PubMed  Google Scholar 

  • Bulloch K, Miller MM, Gal-Toth J, Milner TA, Gottfried-Blackmore A, Waters EM, Kaunzner UW, Liu K, Lindquist R, Nussenzweig MC, Steinman RM, McEwen BS (2008) CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508(5):687–710. doi:10.1002/cne.21668

    Article  PubMed  Google Scholar 

  • Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122(9):3063–3087. doi:10.1172/JCI62636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi:10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM, Doykan CE, Kiner O, Lawson RJ, Frosch MP, Pochet N, Fatimy RE, Krichevsky AM, Gygi SP, Lassmann H, Berry J, Cudkowicz ME, Weiner HL (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77(1):75–99. doi:10.1002/ana.24304

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Huang D, Sasse ME, Ransohoff RM (2006a) Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1(4):1947–1951. doi:10.1038/nprot.2006.327

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006b) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi:10.1038/nn1715

    Article  CAS  PubMed  Google Scholar 

  • Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, Chisholm O, Hofstetter W, Pollard JW, Stanley ER (1994) Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120(6):1357–1372

    CAS  PubMed  Google Scholar 

  • Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69(1):177–187

    Article  CAS  PubMed  Google Scholar 

  • Chan A, Magnus T, Gold R (2001) Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR, Cuerdon NE, Ryan KJ, Johnson KA, Schneider JA, Bennett DA, Chibnik LB, Sperling RA, Bradshaw EM, De Jager PL (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18(11):1556–1558. doi:10.1038/nn.4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CJ, Raung SL, Liao SL, Chen SY (2004) Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokine-stimulated microglia. Biochem Pharmacol 67(5):957–965

    Article  CAS  PubMed  Google Scholar 

  • Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48. doi:10.1016/j.coi.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  • Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. doi:10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. doi:10.1016/j.cell.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  • Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104(25):10655–10660. doi:10.1073/pnas.0610811104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. doi:10.1016/j.tcb.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  • Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3(6):445–453. doi:10.1038/nri1106

    Article  CAS  PubMed  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418. doi:10.1007/s11481-009-9164-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C (2010) The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 224(1-2):93–100. doi:10.1016/j.jneuroim.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  • Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TV, Giese KP (2006) Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 574(Pt 3):805–818. doi:10.1113/jphysiol.2006.111559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21(3):505–520

    Article  CAS  PubMed  Google Scholar 

  • Crotti A, Ransohoff RM (2016) Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44(3):505–515. doi:10.1016/j.immuni.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  • Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56(2):173–189

    Article  CAS  PubMed  Google Scholar 

  • Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139. doi:10.1186/s12974-015-0366-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, Shamloo M, Smith SJ, Shatz CJ (2009) Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64(4):463–470. doi:10.1016/j.neuron.2009.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  • Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. doi:10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Rosa EJ, de Pablo F (2000) Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci 23(10):454–458

    Article  PubMed  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Di Virgilio F (1998) ATP as a death factor. Biofactors 8(3-4):301–303

    Article  PubMed  Google Scholar 

  • Dick AD, Ford AL, Forrester JV, Sedgwick JD (1995) Flow cytometric identification of a minority population of MHC class II positive cells in the normal rat retina distinct from CD45lowCD11b/c + CD4low parenchymal microglia. Br J Ophthalmol 79(9):834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra CD, Dopp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3. Adv Exp Med Biol 186:409–419

    CAS  PubMed  Google Scholar 

  • Dijkstra IM, Hulshof S, van der Valk P, Boddeke HW, Biber K (2004) Cutting edge: activity of human adult microglia in response to CC chemokine ligand 21. J Immunol 172(5):2744–2747

    Article  CAS  PubMed  Google Scholar 

  • Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34(32):10511–10527. doi:10.1523/JNEUROSCI.0405-14.2014

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061

    CAS  PubMed  Google Scholar 

  • Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7(9-10):1223–1233. doi:10.1089/ars.2005.7.1223

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17(20):7673–7682

    CAS  PubMed  Google Scholar 

  • Eder C (2005) Regulation of microglial behavior by ion channel activity. J Neurosci Res 81(3):314–321. doi:10.1002/jnr.20476

    Article  CAS  PubMed  Google Scholar 

  • Edwards FA, Gibb AJ (1993) ATP—a fast neurotransmitter. FEBS Lett 325(1-2):86–89

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239. doi:10.1002/glia.10146

    Article  CAS  PubMed  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113(11):1685–1695. doi:10.1007/s00702-006-0575-6

    Article  CAS  PubMed  Google Scholar 

  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. doi:10.1038/nature08296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore MR, Burton MD, Conrad MS, Rytych JL, Van Alstine WG, Johnson RW (2014a) Respiratory viral infection in neonatal piglets causes marked microglia activation in the hippocampus and deficits in spatial learning. J Neurosci 34(6):2120–2129. doi:10.1523/JNEUROSCI.2180-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014b) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397. doi:10.1016/j.neuron.2014.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525. doi:10.1038/sj.jid.5700701

    Article  CAS  PubMed  Google Scholar 

  • Engemaier E, Rompler H, Schoneberg T, Schulz A (2006) Genomic and supragenomic structure of the nucleotide-like G-protein-coupled receptor GPR34. Genomics 87(2):254–264. doi:10.1016/j.ygeno.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6(10):e26317. doi:10.1371/journal.pone.0026317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155. doi:10.1523/JNEUROSCI.3547-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36(9):1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Finsen BR, Tonder N, Xavier GF, Sorensen JC, Zimmer J (1993) Induction of microglial immunomolecules by anterogradely degenerating mossy fibres in the rat hippocampal formation. J Chem Neuroanat 6(4):267–275

    Article  CAS  PubMed  Google Scholar 

  • Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10(1):61–74. doi:10.1089/rej.2006.9096

    Article  CAS  PubMed  Google Scholar 

  • Flynn G, Maru S, Loughlin J, Romero IA, Male D (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136(1-2):84–93

    Article  CAS  PubMed  Google Scholar 

  • Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6(1):e15973. doi:10.1371/journal.pone.0015973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154(9):4309–4321

    CAS  PubMed  Google Scholar 

  • Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67(5):1414–1425. doi:10.1124/mol.104.009001

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Bittner T, Jung CK, Burgold S, Page RM, Mitteregger G, Haass C, LaFerla FM, Kretzschmar H, Herms J (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13(4):411–413. doi:10.1038/nn.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28(1):12–18. doi:10.1016/j.it.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2003) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23(4):1228–1236

    CAS  PubMed  Google Scholar 

  • Gao L, Brenner D, Llorens-Bobadilla E, Saiz-Castro G, Frank T, Wieghofer P, Hill O, Thiemann M, Karray S, Prinz M, Weishaupt JH, Martin-Villalba A (2015) Infiltration of circulating myeloid cells through CD95L contributes to neurodegeneration in mice. J Exp Med 212(4):469–480. doi:10.1084/jem.20132423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garden GA (2002) Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40(2):240–251. doi:10.1002/glia.10155

    Article  PubMed  Google Scholar 

  • Garden GA (2013) Epigenetics and the modulation of neuroinflammation. Neurotherapeutics 10(4):782–788. doi:10.1007/s13311-013-0207-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome C (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. doi:10.1038/ni.2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George J, Goncalves FQ, Cristovao G, Rodrigues L, Meyer Fernandes JR, Goncalves T, Cunha RA, Gomes CA (2015) Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism. Glia 63(9):1636–1645. doi:10.1002/glia.22833

    Article  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45. doi:10.3389/fncel.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    CAS  PubMed  Google Scholar 

  • Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156(11):4363–4368

    CAS  PubMed  Google Scholar 

  • Glenn JA, Booth PL, Thomas WE (1991) Pinocytotic activity in ramified microglia. Neurosci Lett 123(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Goddard CA, Butts DA, Shatz CJ (2007) Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci U S A 104(16):6828–6833. doi:10.1073/pnas.0702023104

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. doi:10.1038/nn.3531

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679–685

    Article  CAS  PubMed  Google Scholar 

  • Gomez Perdiguero E, Schulz C, Geissmann F (2013) Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61(1):112–120. doi:10.1002/glia.22393

    Article  PubMed  Google Scholar 

  • Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493. doi:10.1523/JNEUROSCI.4440-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  • Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30(1):30–45. doi:10.1016/j.yfrne.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159(6):1327–1340. doi:10.1016/j.cell.2014.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottfried-Blackmore A, Kaunzner UW, Idoyaga J, Felger JC, McEwen BS, Bulloch K (2009) Acute in vivo exposure to interferon-gamma enables resident brain dendritic cells to become effective antigen presenting cells. Proc Natl Acad Sci U S A 106(49):20918–20923. doi:10.1073/pnas.0911509106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goverman JM (2011) Immune tolerance in multiple sclerosis. Immunol Rev 241(1):228–240. doi:10.1111/j.1600-065X.2011.01016.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kundig TM, Frei K, Ginhoux F, Merad M, Becher B (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37(6):1050–1060. doi:10.1016/j.immuni.2012.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389(6652):749–753. doi:10.1038/39639

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369(16):1569–1570

    CAS  PubMed  Google Scholar 

  • Hamerman JA, Tchao NK, Lowell CA, Lanier LL (2005) Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6(6):579–586. doi:10.1038/ni1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155. doi:10.1002/glia.10161

    Article  PubMed  Google Scholar 

  • Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. doi:10.3389/fncel.2013.00065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK (2014) Linking STAT and TLR signaling in microglia: a new role for the histone demethylase Jmjd3. J Mol Med 92(3):197–200. doi:10.1007/s00109-014-1122-9

    Article  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JK, Fong AM, Swain PA, Chen S, Yu YR, Salafranca MN, Greenleaf WB, Imai T, Patel DD (2001) Mutational analysis of the fractalkine chemokine domain. Basic amino acid residues differentially contribute to CX3CR1 binding, signaling, and cell adhesion. J Biol Chem 276(24):21632–21641. doi:10.1074/jbc.M010261200

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326. doi:10.1016/j.pharmthera.2013.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi:10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  • Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13(1):60–69. doi:10.1111/acel.12149

    Article  CAS  PubMed  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. doi:10.1038/nm1177

    Article  CAS  PubMed  Google Scholar 

  • Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238(2):274–288. doi:10.1006/dbio.2001.0393

    Article  CAS  PubMed  Google Scholar 

  • Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Ohrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11(1):3. doi:10.1186/s13024-016-0071-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, Ogawa M (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186(2):134–144. doi:10.1016/j.expneurol.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  • Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. doi:10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines DJ, Hines RM, Mulligan SJ, Macvicar BA (2009) Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57(15):1610–1618. doi:10.1002/glia.20874

    Article  PubMed  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658. doi:10.1038/nrn2699

    Article  CAS  PubMed  Google Scholar 

  • Holtman IR, Noback M, Bijlsma M, Duong KN, van der Geest MA, Ketelaars PT, Brouwer N, Vainchtein ID, Eggen BJ, Boddeke HW (2015a) Glia open access database (GOAD): a comprehensive gene expression encyclopedia of glia cells in health and disease. Glia 63(9):1495–1506. doi:10.1002/glia.22810

    Article  PubMed  Google Scholar 

  • Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Moller T, Orre M, Kamphuis W, Hol EM, Boddeke EW, Eggen BJ (2015b) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:31. doi:10.1186/s40478-015-0203-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hooper C, Sainz-Fuertes R, Lynham S, Hye A, Killick R, Warley A, Bolondi C, Pocock J, Lovestone S (2012) Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci 13:144. doi:10.1186/1471-2202-13-144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshiko M, Arnoux I, Avignone E, Yamamoto N, Audinat E (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32(43):15106–15111. doi:10.1523/JNEUROSCI.1167-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Hua JY, Smith SJ (2004) Neural activity and the dynamics of central nervous system development. Nat Neurosci 7(4):327–332. doi:10.1038/nn1218

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509. doi:10.1146/annurev.neuro.31.060407.125533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37(4):314–327

    Article  PubMed  Google Scholar 

  • Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290(5499):2155–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V, Kallen KJ, Rose-John S, Ludwig A (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102(4):1186–1195. doi:10.1182/blood-2002-12-3775

    Article  CAS  PubMed  Google Scholar 

  • Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205. doi:10.1002/glia.10148

    Article  PubMed  Google Scholar 

  • Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70(4):674–686. doi:10.1016/j.neuron.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T (1997) Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 51(3):135–138

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Ishikawa Y, Skinner RD, Mrak RE, Morrison-Bogorad M, Mukawa J, Griffin WS (1997) Lesioning of the inferior olive using a ventral surgical approach. Characterization of temporal and spatial astrocytic responses at the lesion site and in cerebellum. Mol Chem Neuropathol 31(3):245–264

    Article  CAS  PubMed  Google Scholar 

  • Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212(3):287–295. doi:10.1084/jem.20142322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271(51):33116–33122

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58(5):673–680. doi:10.1016/j.neuron.2008.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfister HW (2003) CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol 137(1–2):210–217

    Article  CAS  PubMed  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Hao AJ, Wu CH, Ling EA (2001) Origin of microglia. Microsc Res Tech 54(1):2–9. doi:10.1002/jemt.1114

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. doi:10.1016/j.neuron.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44. doi:10.3389/fncel.2013.00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, Ludwig A, Lira SA, Jung S (2011) In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118(22):e156–e167. doi:10.1182/blood-2011-04-348946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, Sifri CD, Hengartner MO, Ravichandran KS (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10(5):556–566. doi:10.1038/ncb1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King BF, Townsend-Nicholson A, Burnstock G (1998) Metabotropic receptors for ATP and UTP: exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol Sci 19(12):506–514

    Article  CAS  PubMed  Google Scholar 

  • Kitamura H, Makide K, Shuto A, Ikubo M, Inoue A, Suzuki K, Sato Y, Nakamura S, Otani Y, Ohwada T, Aoki J (2012) GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J Biochem 151(5):511–518. doi:10.1093/jb/mvs011

    Article  CAS  PubMed  Google Scholar 

  • Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L, Carrier Y, Selkoe DJ, Weiner HL (2013) Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-beta1 in the CNS. Glia 61(6):985–1002. doi:10.1002/glia.22490

    Article  PubMed  PubMed Central  Google Scholar 

  • Koistinaho M, Koistinaho J (2002) Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40(2):175–183. doi:10.1002/glia.10151

    Article  PubMed  Google Scholar 

  • Koizumi S (2010) Synchronization of Ca2+ oscillations: involvement of ATP release in astrocytes. FEBS J 277(2):286–292. doi:10.1111/j.1742-4658.2009.07438.x

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Fujishita K (2007) Gliotransmitter ATP-mediated cell-to-cell communication. Brain Nerve 59(7):707–715

    CAS  PubMed  Google Scholar 

  • Koutsilieri E, Scheller C, Tribl F, Riederer P (2002) Degeneration of neuronal cells due to oxidative stress—microglial contribution. Parkinsonism Relat Disord 8(6):401–406

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996a) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996b) Principles of neuronal regeneration. Acta Neurochir Suppl 66:103–106

    CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415

    Article  CAS  PubMed  Google Scholar 

  • Lee YB, Schrader JW, Kim SU (2000) p38 map kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12(7):874–880. doi:10.1006/cyto.2000.0688

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177(5):2549–2562. doi:10.2353/ajpath.2010.100265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke G, Burstyn-Cohen T (2010) TAM receptors and the clearance of apoptotic cells. Ann N Y Acad Sci 1209:23–29. doi:10.1111/j.1749-6632.2010.05744.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336. doi:10.1038/nri2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu L, Barger SW, Mrak RE, Griffin WS (2001) Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res 66(2):163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, Wong WT (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50(9):4444–4451. doi:10.1167/iovs.08-3357

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152. doi:10.1016/j.expneurol.2012.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebscher I, Muller U, Teupser D, Engemaier E, Engel KM, Ritscher L, Thor D, Sangkuhl K, Ricken A, Wurm A, Piehler D, Schmutzler S, Fuhrmann H, Albert FW, Reichenbach A, Thiery J, Schoneberg T, Schulz A (2011) Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J Biol Chem 286(3):2101–2110. doi:10.1074/jbc.M110.196659

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Park E, You B, Jung Y, Park AR, Park SG, Lee JR (2013a) Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8(11):e81218. doi:10.1371/journal.pone.0081218

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SW, Wang CC, Wang YH, Chio CC, Niu KC, Kuo JR (2013b) Microglial activation induced by traumatic brain injury is suppressed by postinjury treatment with hyperbaric oxygen therapy. J Surg Res 184(2):1076–1084. doi:10.1016/j.jss.2013.04.070

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. doi:10.1126/science.1154370

    Article  CAS  PubMed  Google Scholar 

  • Ling EA, Leblond CP (1973) Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol 149(1):73–81. doi:10.1002/cne.901490105

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kielian T (2009) Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways. J Immunol 183(9):5537–5547. doi:10.4049/jimmunol.0900083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Condello C, Schain A, Harb R, Grutzendler J (2010) CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 30(50):17091–17101. doi:10.1523/JNEUROSCI.4403-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lleo A, Galea E, Sastre M (2007) Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 64(11):1403–1418. doi:10.1007/s00018-007-6516-1

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    Article  CAS  PubMed  Google Scholar 

  • Loscher CE, Mills KH, Lynch MA (2003) Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. J Neuroimmunol 137(1–2):117–124, doi:S0165572803000729 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Review. Histol Histopathol 19(2):535–564

    CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. doi:10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas A, Holtmann G, Gerken G, Pietsch A, Braun-Lang U, Gilani K, Strassburger K, Gesing S, Janssen OE, Kavelaars A, Heijnen CJ, Schedlowski M, Elsenbruch S (2006) Visceral pain and public speaking stress: neuroendocrine and immune cell responses in healthy subjects. Brain Behav Immun 20(1):49–56. doi:10.1016/j.bbi.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  • Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156. doi:10.1146/annurev.neuro.28.061604.135632

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):a005710. doi:10.1101/cshperspect.a005710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB, Smith A, Lynch MA (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J Neurochem 110(5):1547–1556. doi:10.1111/j.1471-4159.2009.06253.x

    Article  CAS  PubMed  Google Scholar 

  • Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19(6):672–682. doi:10.1038/cr.2009.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madore C, Joffre C, Delpech JC, De Smedt-Peyrusse V, Aubert A, Coste L, Laye S, Nadjar A (2013) Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide. Brain Behav Immun 34:151–158. doi:10.1016/j.bbi.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Maggi L, Trettel F, Scianni M, Bertollini C, Eusebi F, Fredholm BB, Limatola C (2009) LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R). J Neuroimmunol 215(1-2):36–42. doi:10.1016/j.jneuroim.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29(13):4252–4262. doi:10.1523/JNEUROSCI.5572-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346. doi:10.1016/j.immuni.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547

    Article  CAS  PubMed  Google Scholar 

  • Marin-Teva JL, Cuadros MA, Martin-Oliva D, Navascues J (2011) Microglia and neuronal cell death. Neuron Glia Biol 7(1):25–40. doi:10.1017/S1740925X12000014

    Article  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. doi:10.12703/P6-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto Y (1992) Immune defense mechanism in the central nervous system—role of microglia and astrocytes. No To Shinkei 44(10):881–892

    CAS  PubMed  Google Scholar 

  • McCarty MF (2006) Toward prevention of Alzheimers disease—potential nutraceutical strategies for suppressing the production of amyloid beta peptides. Med Hypotheses 67(4):682–697. doi:10.1016/j.mehy.2006.04.067

    Article  CAS  PubMed  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15(20):5647–5658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metchnikoff E, Binnie FG (1905) Immunity in infective diseases. University Press, Cambridge

    Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97(14):8075–8080. doi:10.1073/pnas.090017497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi ZP, Jiang P, Weng WL, Lindberg FP, Narayanan V, Lagenaur CF (2000) Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J Comp Neurol 416(3):335–344

    Article  CAS  PubMed  Google Scholar 

  • Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto TT, Furuya N, Matozaki T (2004) Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol Biol Cell 15(8):3950–3963. doi:10.1091/mbc.E04-01-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Kawanokuchi J, Numata K, Suzumura A (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979(1-2):65–70

    Article  CAS  PubMed  Google Scholar 

  • Moller JC, Klein MA, Haas S, Jones LL, Kreutzberg GW, Raivich G (1996) Regulation of thrombospondin in the regenerating mouse facial motor nucleus. Glia 17(2):121–132. doi:10.1002/(SICI)1098-1136(199606)17:2<121::AID-GLIA4>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • Moller HD, Fu FH, Niyibizi C, Studer RK, Georgescu HJ, Robbins PD, Evans CH (2000) TGF-beta-1 gene transfer in joint cartilage cells. Stimulating effect in extracellular matrix synthesis. Orthopade 29(2):75–79

    CAS  PubMed  Google Scholar 

  • Mukherjee P, Rachita C, Aisen PS, Pasinetti GM (2001) Non-steroidal anti-inflammatory drugs protect against chondrocyte apoptotic death. Clin Exp Rheumatol 19(1 Suppl 22):S7–S11

    CAS  PubMed  Google Scholar 

  • Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, Miyashita M, Itoh H, Oldenborg PA, Furuya N, Matozaki T (2006) CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J Neurosci 26(48):12397–12407. doi:10.1523/JNEUROSCI.3981-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Muzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191(1-2):39–44. doi:10.1016/j.jneuroim.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  • Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2003) cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126(Pt 5):1048–1057

    Article  PubMed  Google Scholar 

  • Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158(3):1030–1038. doi:10.1016/j.neuroscience.2008.06.046

    Article  CAS  PubMed  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240. PMID: 24471431, Epub 2014 Jan 22. Review. PMID: 24471431

  • Nencini P, Sarti C, Innocenti R, Pracucci G, Inzitari D (2003) Acute inflammatory events and ischemic stroke subtypes. Cerebrovasc Dis 15(3):215–221. doi:10.1159/000068831

    Article  PubMed  Google Scholar 

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1-2):92–99. doi:10.1016/j.jneuroim.2006.11.032

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Wekerle H (2013) Brain microglia: watchdogs with pedigree. Nat Neurosci 16(3):253–255. doi:10.1038/nn.3338

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295. doi:10.1093/brain/awn109

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  • Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, Kume T, Akaike A, Satoh M (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 429(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286(3):2308–2319. doi:10.1074/jbc.M110.169839

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Ohnishi E, Shibuya H, Takahashi T (2005) Functions for proteinases in the ovulatory process. Biochim Biophys Acta 1751(1):95–109. doi:10.1016/j.bbapap.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Okabe Y, Medzhitov R (2015) Tissue biology perspective on macrophages. Nat Immunol 17(1):9–17. doi:10.1038/ni.3320

    Article  CAS  Google Scholar 

  • Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, Gomez-Nicola D (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139(Pt 3):891–907. doi:10.1093/brain/awv379

    Article  PubMed  PubMed Central  Google Scholar 

  • Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12(7):872–878. doi:10.1038/nn.2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K, Hol EM (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35(12):2746–2760. doi:10.1016/j.neurobiolaging.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  • Paloneva J, Autti T, Raininko R, Partanen J, Salonen O, Puranen M, Hakola P, Haltia M (2001) CNS manifestations of Nasu-Hakola disease: a frontal dementia with bone cysts. Neurology 56(11):1552–1558

    Article  CAS  PubMed  Google Scholar 

  • Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589–597. doi:10.1007/s00424-006-0061-x

    Article  CAS  PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. doi:10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. doi:10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15(2):313–326

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15(3):349–354

    Article  PubMed  Google Scholar 

  • Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37(5):1290–1301. doi:10.1002/eji.200636837

    Article  CAS  PubMed  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. doi:10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  • Prada I, Furlan R, Matteoli M, Verderio C (2013) Classical and unconventional pathways of vesicular release in microglia. Glia 61(7):1003–1017. doi:10.1002/glia.22497

    Article  PubMed  Google Scholar 

  • Preissler J, Grosche A, Lede V, Le Duc D, Krugel K, Matyash V, Szulzewsky F, Kallendrusch S, Immig K, Kettenmann H, Bechmann I, Schoneberg T, Schulz A (2015) Altered microglial phagocytosis in GPR34-deficient mice. Glia 63(2):206–215. doi:10.1002/glia.22744

    Article  PubMed  Google Scholar 

  • Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol. doi:10.1007/s00401-014-1267-1

    Google Scholar 

  • Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Van Gerpen JA, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44(2):200–205. doi:10.1038/ng.1027

    Article  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28(11):571–573. doi:10.1016/j.tins.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2002) Chemokines in neurological trauma models. Ann N Y Acad Sci 961:346–349

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2009) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31(5):711–721. doi:10.1016/j.immuni.2009.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi:10.1038/nature09615

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi:10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi:10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reaux-Le Goazigo A, Van Steenwinckel J, Rostene W, Melik Parsadaniantz S (2013) Current status of chemokines in the adult CNS. Prog Neurobiol 104:67–92. doi:10.1016/j.pneurobio.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Rio-Hortega PD (1932) Sociedad española de historia natural Madrid. [from old catalog]. Revista Española de Biología, Madrid

    Google Scholar 

  • Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208. doi:10.1038/nri3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues RJ, Tome AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. doi:10.3389/fnins.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250. doi:10.1523/JNEUROSCI.3667-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7(2):105–117. doi:10.1038/nri2024

    Article  CAS  PubMed  Google Scholar 

  • Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24(50):11421–11428. doi:10.1523/JNEUROSCI.2251-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Roumier A, Pascual O, Bechade C, Wakselman S, Poncer JC, Real E, Triller A, Bessis A (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 3(7):e2595. doi:10.1371/journal.pone.0002595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787. doi:10.1038/nri3086

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442. doi:10.1146/annurev.neuro.22.1.389

    Article  CAS  PubMed  Google Scholar 

  • Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R (2001) Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98(11):6295–6300. doi:10.1073/pnas.111152498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathology 36(1):39–49. doi:10.1111/neup.12235

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. doi:10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183(1):25–33

    Article  PubMed  Google Scholar 

  • Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21(1):5–10. doi:10.1016/j.conb.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Schmid AW, Lynch MA, Herron CE (2009) The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus 19(7):670–676. doi:10.1002/hipo.20542

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A (2005) Comments on “Can stress cause depression?” by H.M. van Praag. Progress in Neuro-Psychopharmacology and Biological Psychiatry 28 (2004) 891–907. Prog Neuropsychopharmacol Biol Psychiatry 29(5):775–776. doi:10.1016/j.pnpbp.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A 95(13):7778–7783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoneberg T, Schultz G, Gudermann T (1999a) Structural basis of G protein-coupled receptor function. Mol Cell Endocrinol 151(1-2):181–193

    Article  CAS  PubMed  Google Scholar 

  • Schoneberg T, Schulz A, Grosse R, Schade R, Henklein P, Schultz G, Gudermann T (1999b) A novel subgroup of class I G-protein-coupled receptors. Biochim Biophys Acta 1446(1-2):57–70

    Article  CAS  PubMed  Google Scholar 

  • Schoneberg T, Hofreiter M, Schulz A, Rompler H (2007) Learning from the past: evolution of GPCR functions. Trends Pharmacol Sci 28(3):117–121. doi:10.1016/j.tips.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G (1997) Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia. Stroke 28(2):382–386

    Article  CAS  PubMed  Google Scholar 

  • Schulz A, Schoneberg T (2003) The structural evolution of a P2Y-like G-protein-coupled receptor. J Biol Chem 278(37):35531–35541. doi:10.1074/jbc.M303346200

    Article  CAS  PubMed  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  • Schwaeble WJ, Stover CM, Schall TJ, Dairaghi DJ, Trinder PK, Linington C, Iglesias A, Schubart A, Lynch NJ, Weihe E, Schafer MK (1998) Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett 439(3):203–207

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. doi:10.1126/science.1074069

    Article  CAS  PubMed  Google Scholar 

  • Sequerra EB, Miyakoshi LM, Froes MM, Menezes JR, Hedin-Pereira C (2010) Generation of glutamatergic neurons from postnatal and adult subventricular zone with pyramidal-like morphology. Cereb Cortex 20(11):2583–2591. doi:10.1093/cercor/bhq006

    Article  PubMed  Google Scholar 

  • Serrats J, Schiltz JC, Garcia-Bueno B, van Rooijen N, Reyes TM, Sawchenko PE (2010) Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65(1):94–106. doi:10.1016/j.neuron.2009.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. doi:10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS (2000) Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 284(10):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581. doi:10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  • Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN (2000) Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 108(1-2):192–200

    Article  CAS  PubMed  Google Scholar 

  • Sparacio SM, Zhang Y, Vilcek J, Benveniste EN (1992) Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-kappa B-like nuclear protein. J Neuroimmunol 39(3):231–242

    Article  CAS  PubMed  Google Scholar 

  • Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462(2):223–240. doi:10.1002/cne.10736

    Article  PubMed  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440(7087):1054–1059. doi:10.1038/nature04671

    Article  CAS  PubMed  Google Scholar 

  • Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266

    Article  CAS  PubMed  Google Scholar 

  • Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389. doi:10.1146/annurev-neuro-061010-113810

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3):233–247

    Article  CAS  PubMed  Google Scholar 

  • Streit A (2004) Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 276(1):1–15. doi:10.1016/j.ydbio.2004.08.037

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510. doi:10.1016/j.tins.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Streit A, Stern CD (1999) Mesoderm patterning and somite formation during node regression: differential effects of chordin and noggin. Mech Dev 85(1-2):85–96

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT (1998) Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 152(1):74–87. doi:10.1006/exnr.1998.6835

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45(2):208–212. doi:10.1002/glia.10319

    Article  PubMed  Google Scholar 

  • Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, Sanchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschutz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, VanBroeckhoven C, Zetterberg H, Nellgard B, Blennow K, Crispin A, Ewers M, Haass C (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8(5):466–476. doi:10.15252/emmm.201506123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugo T, Tachimoto H, Chikatsu T, Murakami Y, Kikukawa Y, Sato S, Kikuchi K, Nagi T, Harada M, Ogi K, Ebisawa M, Mori M (2006) Identification of a lysophosphatidylserine receptor on mast cells. Biochem Biophys Res Commun 341(4):1078–1087. doi:10.1016/j.bbrc.2006.01.069

    Article  CAS  PubMed  Google Scholar 

  • Suzumura A, Marunouchi T, Yamamoto H (1991) Morphological transformation of microglia in vitro. Brain Res 545(1-2):301–306

    Article  CAS  PubMed  Google Scholar 

  • Szabo M, Gulya K (2013) Development of the microglial phenotype in culture. Neuroscience 241:280–295. doi:10.1016/j.neuroscience.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657. doi:10.1084/jem.20041611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4(4):e124. doi:10.1371/journal.pmed.0040124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanuma N, Sakuma H, Sasaki A, Matsumoto Y (2006) Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 112(2):195–204. doi:10.1007/s00401-006-0083-7

    Article  CAS  PubMed  Google Scholar 

  • Taylor SE, Morganti-Kossmann C, Lifshitz J, Ziebell JM (2014) Rod microglia: a morphological definition. PLoS One 9(5):e97096. doi:10.1371/journal.pone.0097096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G (2013) Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine 44(1):11–19. doi:10.1007/s12020-012-9839-0

    Article  CAS  PubMed  Google Scholar 

  • Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15. doi:10.3410/B3-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R (2014) Age-dependent changes on TGFbeta1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196. doi:10.1016/j.bbi.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527. doi:10.1371/journal.pbio.1000527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60(4):541–558. doi:10.1002/glia.22287

    Article  PubMed  PubMed Central  Google Scholar 

  • Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036. doi:10.1182/blood-2008-06-162404

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609. doi:10.1016/j.nbd.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  • Turola E, Furlan R, Bianco F, Matteoli M, Verderio C (2012) Microglial microvesicle secretion and intercellular signaling. Front Physiol 3:149. doi:10.3389/fphys.2012.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Everbroeck B, Dewulf E, Pals P, Lubke U, Martin JJ, Cras P (2002) The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging 23(1):59–64

    Article  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81. doi:10.1002/ana.20315

    Article  CAS  PubMed  Google Scholar 

  • Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A, Garaschuk O, Ransohoff RM, Jucker M (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109(44):18150–18155. doi:10.1073/pnas.1210150109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, Riganti L, Corradini I, Francolini M, Garzetti L, Maiorino C, Servida F, Vercelli A, Rocca M, Dalla Libera D, Martinelli V, Comi G, Martino G, Matteoli M, Furlan R (2012) Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 72(4):610–624. doi:10.1002/ana.23627

    Article  CAS  PubMed  Google Scholar 

  • Verheijden S, Beckers L, Casazza A, Butovsky O, Mazzone M, Baes M (2015) Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal beta-oxidation deficiency. Glia 63(9):1606–1620. doi:10.1002/glia.22831

    Article  PubMed  Google Scholar 

  • Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50(3):235–246. doi:10.1002/glia.20173

    Article  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980. doi:10.1523/JNEUROSCI.4363-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Rothwell NJ, Pinteaux E, Brough D (2008) Neuronal injury induces the release of pro-interleukin-1beta from activated microglia in vitro. Brain Res 1236:1–7. doi:10.1016/j.brainres.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760. doi:10.1038/ni.2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6):1061–1071. doi:10.1016/j.cell.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88(3):495–505. doi:10.1189/jlb.1209822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89(2):162–175. doi:10.1016/j.pneurobio.2009.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150(8):963–976. doi:10.1038/sj.bjp.0707167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieghofer P, Prinz M (2016) Genetic manipulation of microglia during brain development and disease. Biochim Biophys Acta 1862(3):299–309. doi:10.1016/j.bbadis.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  • Wieghofer P, Knobeloch KP, Prinz M (2015) Genetic targeting of microglia. Glia 63(1):1–22. doi:10.1002/glia.22727

    Article  PubMed  Google Scholar 

  • Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, Lewandowska E, Lechowicz W, Bertrand E, Szpak GM, Schmidt-Sidor B (2002) Morphological analysis of active microglia—rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease). Folia Neuropathol 40(3):125–131

    PubMed  Google Scholar 

  • Wigglesworth MJ, Wolfe LA, Wise A (2006) Orphan seven transmembrane receptor screening. Ernst Schering Found Symp Proc 2:105–143

    Google Scholar 

  • Wolfgang SA (1999) Olanzapine in whole, not half, tablets for psychosis from Alzheimer’s dementia. Am J Health Syst Pharm 56(21):2245–2246

    CAS  PubMed  Google Scholar 

  • Wu HS, Li YF, Chou CI, Yuan CC, Hung MW, Tsai LC (2002) The concentration of serum transforming growth factor beta-1 (TGF-beta1) is decreased in cervical carcinoma patients. Cancer Invest 20(1):55–59

    Article  PubMed  Google Scholar 

  • Wu LJ, Vadakkan KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55(8):810–821. doi:10.1002/glia.20500

    Article  PubMed  Google Scholar 

  • Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 24(7):1190–1201. doi:10.1016/j.bbi.2010.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi:10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345(6274):442–444. doi:10.1038/345442a0

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H, Doyu M, Sobue G (2002) Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 80(1):158–167

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809. doi:10.1038/35037739

    Article  CAS  PubMed  Google Scholar 

  • Zhang SC, Goetz BD, Carre JL, Duncan ID (2001) Reactive microglia in dysmyelination and demyelination. Glia 34(2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  • Zilkova M, Koson P, Zilka N (2006) The hunt for dying neurons: insight into the neuronal loss in Alzheimer’s disease. Bratisl Lek Listy 107(9–10):366–373

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Braun N (1999) Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385

    Article  CAS  PubMed  Google Scholar 

  • Zondler L, Muller K, Khalaji S, Bliederhauser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH (2016) Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. doi:10.1007/s00401-016-1548-y

    Google Scholar 

  • Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29(4):305–315

    Article  CAS  PubMed  Google Scholar 

  • Zujovic V, Schussler N, Jourdain D, Duverger D, Taupin V (2001) In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFalpha and 8-isoprostane production induced by intracerebroventricular injection of LPS. J Neuroimmunol 115(1-2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S (2012) Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J Neurosci 32(33):11285–11298. doi:10.1523/JNEUROSCI.6182-11.2012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Butovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butovsky, O., Madore, C., Weiner, H. (2017). Microglial Biology and Physiology. In: Ikezu, T., Gendelman, H. (eds) Neuroimmune Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-44022-4_13

Download citation

Publish with us

Policies and ethics