Skip to main content

Multi Agent Collaborative Search

  • Chapter
  • First Online:
NEO 2015

Part of the book series: Studies in Computational Intelligence ((SCI,volume 663))

Abstract

This chapter presents an overview of Multi Agent Collaborative Search (MACS), for multi-objective optimisation with an analysis of different heuristics for local search. In particular the effects of simple inertia and differential evolution operators in combination with pattern search and gradient methods are investigated. Different benchmarks are used to demonstrate the effectiveness of the MACS framework and of the heuristics for both local and global search. The MACS framework is tested on two sets of academic problems and two real space mission design problems using the IGD and the success rate as performance metrics. The performance of MACS is compared against three known multi-objective optimisation algorithms: NSGA-II, MOAED and MTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erfani, T., Utyuzhnikov, S.: Directed search domain: a method for even generation of the pareto frontier in multiobjective optimization. Eng. Optim. 43(5), 467–484 (2011)

    Article  MathSciNet  Google Scholar 

  2. Fliege, J., Drummond, M., Svaiter, B.: Newton’s method for multicriteria optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Graña Drummond, L., Svaiter, B.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ishibuchi, H., Yoshida, T.: Hybrid evolutionary multi-objective optimization algorithms. Soft Computing Systems: Design, Management and Applications, pp. 163–172. IOS Press, Amsterdam (2002)

    Google Scholar 

  5. Knowles, J., Corne, D.: Local search, multiobjective optimization and the pareto archived evolution strategy. In: Proceedings of Third Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, Citeseer, pp 209–216 (1999) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.6848&rep=rep1&type=pdf

  6. Kumar, A., Sharma, D., Deb, K., (2007) A hybrid multi-objective optimization procedure using pcx based nsga-ii and sequential quadratic programming. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 3011–3018. IEEE (2007)

    Google Scholar 

  7. Lara, A., Sanchez, G., Coello Coello, C., Schutze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evolut. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  8. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolut. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  9. Leary, R.H.: Global optimization on funneling landscapes. Journal of Global Optimtisation 18, 367–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, M., Zou, X., Chen, Y., Wu, Z.: Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09. IEEE, pp. 2913–2918 (2009)

    Google Scholar 

  11. Maddock, C., Vasile, M.: Design of optimal spacecraft-asteroid formations through a hybrid global optimization approach. International Journal of Intelligent Computing and Cybernetics 1(2), 239–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Minisci, E., Avanzini, G.: Orbit transfer manoeuvres as a test benchmark for comparison metrics of evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 20009. CEC’09, pp. 350–357. IEEE (2009)

    Google Scholar 

  13. Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for multi-objective optimizations. In: Practical Approaches to Multi-Objective Optimization (2005). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.6798&rep=rep1&type=pdf

  14. Sanchez, J., Colombo, C., Vasile, M., Radice, G.: Multi-criteria comparison among several mitigation strategies for dangerous near earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009)

    Article  Google Scholar 

  15. Schuetze, O., Sanchez, G., Coello Coello, C.: A new memetic strategy for the numerical treatment of multi-objective optimization problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, ACM, pp. 705–712 (2008)

    Google Scholar 

  16. Schuetze, O., Laumanns, M., Tantar, E., Coello Coello, C., Talbi, E.: Computing gap free Pareto front approximations with stochastic search algorithms. Evolut. Comput. 18(1), 65–96 (2010)

    Article  Google Scholar 

  17. Sindhya, K., Sinha, A., Deb, K., Miettinen, K.: Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 2919–2926. IEEE (2009)

    Google Scholar 

  18. Tseng, L., Chen, C.: Multiple trajectory search for unconstrained, constrained multi-objective optimization. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 1951–1958. IEEE (2009)

    Google Scholar 

  19. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Ann. N. Y. Acad. Sci. 1065(1), 152–173 (2005)

    Article  Google Scholar 

  20. Vasile, M., Locatelli, M.: A hybrid multiagent approach for global trajectory optimization. Journal of Global Optimization 44(4), 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vasile, M., Zuiani, F.: A hybrid multiobjective optimization algorithm applied to space trajectory optimization. In: IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 1–8 (2010)

    Google Scholar 

  22. Vasile, M., Zuiani, F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225(11), 1211–1227 (2011)

    Article  Google Scholar 

  23. Vasile, M., Minisci, E., Locatelli, M.: A dynamical system perspective on evolutionary heuristics applied to space trajectory optimization problems. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 2340–2347. IEEE (2009)

    Google Scholar 

  24. Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evolut. Comput. 15(2), 267–281 (2011)

    Article  Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation, IEEE Transactions on 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zhang, Q., Suganthan, P.: Final report on CEC’09 MOEA competition. In: IEEE Congress on Evolutionary Computation, CEC’09 (2009)

    Google Scholar 

  27. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report (2008)

    Google Scholar 

  28. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA, D on CEC09 unconstrained MOP test instances. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 203–208. IEEE (2009)

    Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolut. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  30. Zuiani, F., Vasile, M.: Multi-agent collaborative search based on Tchebycheff decomposition. Comput. Optim. Appl. 56(1), 189–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Vasile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasile, M., Ricciardi, L. (2017). Multi Agent Collaborative Search. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds) NEO 2015. Studies in Computational Intelligence, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-319-44003-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44003-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44002-6

  • Online ISBN: 978-3-319-44003-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics