Skip to main content

Mechanical Leg Design of the Anthropomorphic Robot Antares

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9812))

Included in the following conference series:

Abstract

An overview of the existing anthropomorphic robots and an analysis of servomechanisms and bearing parts involved in the assembly of robot legs are presented. We propose an option for constructing the legs of the robot Antares under development. A two-motor layout, used in the knee, ensures higher joint power along with independent interaction with the neighboring upper and lower leg joints when bending. To reduce the electrical load on the main battery of the robot, the upper legs are provided with a mounting pad for additional batteries powering servos. Direct control of the servos is also carried out through the sub-controllers, responsible for all 6 engines installed in the articular joints of the robot legs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kudryashov, V.B., Lapshov, V.S., Noskov, V.P., Rubtsov, I.V.: Problems of robotization for military ground technics. Izvestiya SFedU. Eng. Sci. 3(152), 42–57 (2014)

    Google Scholar 

  2. Kovalchuk, A.K., Kulakov, D.B., Semenov, S.E., Yarots, V.V., Vereikin, A.A., Kulakov, B.B., Karginov, L.A.: Method for designing spatial tree-like actuators of walking robots. Eng. Bull. Bauman MSTU 11, 6–10 (2014)

    Google Scholar 

  3. Karpenko, A.P.: Robotics and computer-aided design systems. Teaching guide. MGTU im. N.E. Baumana, Moscow (2014)

    Google Scholar 

  4. Zeltser, A.G., Vereikin, A.A., Goyhman, A.V., Savchenko, A.G., Zhukov, A.A., Demchenko, M.A.: The concept of capsular exoskeleton for rescue operations. Eng. Bull. Bauman MSTU 3, 14–22 (2015)

    Google Scholar 

  5. Warnakulasooriyaa, S., Bagheria, A., Sherburnb, N., Shanmugavel, M.: Bipedal walking robot – a developmental design. Procedia Eng. 41, 1016–1021 (2012)

    Article  Google Scholar 

  6. Lima, S.C., Yeapa, G.H.: The locomotion of bipedal walking robot with six degree of freedom. Procedia Eng. 41, 8–14 (2012)

    Article  Google Scholar 

  7. Yoo, J.K., Lee, B.J., Kim, J.H.: Recent progress and development of the humanoid robot Hansaram. Rob. Auton. Syst. 57, 973–981 (2009)

    Article  Google Scholar 

  8. Buschmann, T., Lohmeier, S., Ulbrich, H.: Humanoid robot Lola: design and walking control. J. Physiol. 103, 141–148 (2009)

    MATH  Google Scholar 

  9. Mohameda, Z., Capi, G.: Development of a new mobile humanoid robot for assisting elderly people. Procedia Eng. 41, 345–351 (2012)

    Article  Google Scholar 

  10. Nakashima, M., Tsunoda, Y.: Improvement of crawl stroke for the swimming humanoid robot to establish an experimental platform for swimming research. Procedia Eng. 112, 517–521 (2015)

    Article  Google Scholar 

  11. Shah, S.V., Saha, S.K., Dutt, J.K.: Modular framework for dynamic modeling and analyses of legged robots. Mech. Mach. Theory 49, 234–255 (2012)

    Article  Google Scholar 

  12. Yua, X., Fub, C., Chen, K.: Modeling and control of a single-legged robot. Procedia Eng. 24, 788–792 (2011)

    Article  Google Scholar 

  13. Potts, A.S., Jaime da Cruz, J.: A comparison between free motion planning algorithms applied to a quadruped robot leg. IFAC-Papersonline 48(19), 019–024 (2015)

    Google Scholar 

  14. Rostro-Gonzalez, H., Cerna-Garcia, P.A., Trejo-Caballero, G., Garcia-Capulin, C.H., Ibarra-Manzano, M.A., Avina-Cervantes, J.G., Torres-Huitzil, C.: A CPG system based on spiking neurons for hexapod robot locomotion. Neurocomputing 170, 47–54 (2015)

    Article  Google Scholar 

  15. Pan, P.S., Wu, C.M.: Design of a hexapod robot with a servo control and a man-machine interface. Rob. Comput.-Integr. Manuf. 28, 351–358 (2012)

    Article  MathSciNet  Google Scholar 

  16. Vidoni, R., Gasparetto, A.: Efficient force distribution and leg posture for a bio-inspired spider robot. Rob. Auton. Syst. 59, 142–150 (2011)

    Article  Google Scholar 

  17. ROBOTIS catalogue. http://en.robotis.com/index/product.php?cate_code=101011. Accessed 3 Mar 2016

  18. Motienko, A.I., Makeev, S.M., Basov, O.O.: Analysis and modeling of position choice process for transportation of the sufferer on the basis of Bayesian belief networks. SPIIRAS Proc. 43, 135–155 (2015)

    Article  Google Scholar 

  19. Ronzhin, A., Budkov, V.Y.: Multimodal interaction with intelligent meeting room facilities from inside and outside. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2009. LNCS, vol. 5764, pp. 77–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Ronzhin, A.L., Budkov, V.Y., Ronzhin, A.L.: User profile forming based on audiovisual situation analysis in smart meeting room. SPIIRAS Proc. 23, 482–494 (2012)

    Google Scholar 

  21. Ronzhin, A.L., Karpov, A.A., Leontyeva, A.B., Kostuchenko, B.E.: The development of the multimodal information kiosk. SPIIRAS Proc. 5, 227–245 (2007)

    Google Scholar 

  22. Suranova, D.A., Meshcheryakov, R.V.: Personified voice interaction software in billing systems. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS, vol. 8773, pp. 345–352. Springer, Heidelberg (2014)

    Google Scholar 

  23. Karpov, A.A., Ronzhin, A.L.: Information enquiry kiosk with multimodal user interface. Pattern Recogn. Image Anal. 19(3), 546–558 (2009). MAIK Nauka/Interperiodica

    Article  Google Scholar 

  24. Yusupov, R.M., Ronzhin, A.L.: From smart devices to smart space. Herald Russ. Acad. Sci. MAIK Nauka 80(1), 45–51 (2010)

    Google Scholar 

Download references

Acknowledgment

The study was performed through the grant of the Russian Science Foundation (project â„–16-19-00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Pavluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pavluk, N., Ivin, A., Budkov, V., Kodyakov, A., Ronzhin, A. (2016). Mechanical Leg Design of the Anthropomorphic Robot Antares. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2016. Lecture Notes in Computer Science(), vol 9812. Springer, Cham. https://doi.org/10.1007/978-3-319-43955-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43955-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43954-9

  • Online ISBN: 978-3-319-43955-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics