Skip to main content

A Heterogeneous Clustering Approach for Human Activity Recognition

  • Conference paper
  • First Online:
Book cover Big Data Analytics and Knowledge Discovery (DaWaK 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9829))

Included in the following conference series:

  • 1197 Accesses

Abstract

Human Activity Recognition (HAR) has a growing research interest due to the widespread presence of motion sensors on user’s personal devices. The performance of HAR system deployed on large-scale is often significantly lower than reported due to the sensor-, device-, and person-specific heterogeneities. In this work, we develop a new approach for clustering such heterogeneous data, represented as a time series, which incorporates different level of heterogeneities in the data within the model. Our method is to represent the heterogeneities as a hierarchy where each level in the hierarchy overcomes a specific heterogeneity (e.g., a sensor-specific heterogeneity). Experimental evaluation on Electromyography (EMG) sensor dataset with heterogeneities shows that our method performs favourably compared to other time series clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graupe, D., Cline, W.K.: Functional separation of emg signals via arma identification methods for prosthesis control purposes. IEEE Trans. Syst. Man Cybern. 5(2), 252–259 (1975)

    Article  Google Scholar 

  2. Griffin, L.Y., Albohm, M.J., Arendt, E.A., Bahr, R., Beynnon, B.D., DeMaio, M., Dick, R.W., Engebretsen, L., Garrett, W.E., Hannafin, J.A., et al.: Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 34(9), 1512–1532 (2006)

    Article  Google Scholar 

  3. Gupta, P., Dallas, T.: Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 61(6), 1780–1786 (2014)

    Article  Google Scholar 

  4. Huang, H., Kuiken, T., Lipschutz, R.D., et al.: A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56(1), 65–73 (2009)

    Article  Google Scholar 

  5. Huang, H., Zhang, F., Hargrove, L.J., Dou, Z., Rogers, D.R., Englehart, K.B.: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 58(10), 2867–2875 (2011)

    Article  Google Scholar 

  6. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96(453), 161–173 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ishwaran, H., Zarepour, M.: Markov chain monte carlo in approximate dirichlet and beta two-parameter process hierarchical models. Biometrika 87(2), 371–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, D.K., Pah, N.D., Bradley, A.: Wavelet analysis of surface electromyography. IEEE Trans. Neural Syst. Rehabil. Eng. 11(4), 400–406 (2003)

    Article  Google Scholar 

  9. Liao, T.W.: Clustering of time series data–a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  10. Lindley, D.V., Smith, A.F.: Bayes estimates for the linear model. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34, 1–41 (1972)

    MathSciNet  MATH  Google Scholar 

  11. Montero, P., Vilar, J.A.: TSclust: An R package for time series clustering. J. Stat. Softw. 62(1), 1–43 (2014). http://www.jstatsoft.org/v62/i01/

  12. Nieto-Barajas, L.E., Contreras-Cristan, A.: A bayesian nonparametric approach for time series clustering. Bayesian Anal. 9(1), 147–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peeraer, L., Aeyels, B., Van der Perre, G.: Development of emg-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. J. Biomed. Eng. 12(3), 178–182 (1990)

    Article  Google Scholar 

  14. Reaz, M., Hussain, M., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biolog. Proc. Online 8(1), 11–35 (2006)

    Article  Google Scholar 

  15. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T.S., Kjærgaard, M.B., Dey, A., Sonne, T., Jensen, M.M.: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pp. 127–140 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the NIH grant R01GM103309. We acknowledge Deepak Joshi and Michel Kinsy for their inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Kafle .

Editor information

Editors and Affiliations

Appendix A Posterior Characterization

Appendix A Posterior Characterization

  • \(\alpha _i\): The posterior for \(\alpha _i\) is:

    $$\begin{aligned} \begin{aligned} f(\alpha _i | rest) \propto N_P(\mu _a, \varSigma _a)\\ \varSigma _a = (\varSigma _{\alpha }^{-1} + Z^T\varSigma _{y}^{-1}Z)^{-1}\\ \mu _a = \varSigma _a Z^T \varSigma _y^{-1} (y_i - X \beta _i - \theta _i)\\ f(\sigma _{\alpha _j}^2 | rest) = IGa(c_0^{\alpha } + \frac{n}{2}, c_1^{\alpha } + \frac{1}{2} \sum _{i=1}^n \alpha _{ij}^2), j = 1,..,p \end{aligned} \end{aligned}$$
    (8)
  • \(\beta _i\): The posterior for \(\beta _i\) (or \(\beta _{s,r,k}\)) is:

    $$\begin{aligned} \begin{aligned} f(\beta _i | rest) \propto N_D (\mu _b, \varSigma _b)\\ \varSigma _b = (\varSigma _{\beta ,s,r,k}^{-1} + X^T \varSigma _{y}^{-1}X )^{-1}\\ \mu _b = \varSigma _b [ X^T \varSigma _{y}^{-1} (y_i - Z \alpha _i - \theta _i) + \varSigma _{\beta ,s,r,k} \overline{\beta _{s,r,k}} ]\\ f(\sigma _{\beta _{s,r,k,i}}^2 | rest) = IGa(c_0^{\beta _{s,r,k,i}} + \frac{m}{2}, c_1^{\beta _{s,r,k,i}} + \frac{1}{2} \sum _{j=1}^m \beta _{s,r,k,i}^2)\\ i = 1,..,p \end{aligned} \end{aligned}$$
    (9)

    where m is the number of data points belonging to that cluster.

  • \(\theta _i\): The posterior for \(\theta _i\) (or \(\theta _{s,r,k}\)) is:

    $$\begin{aligned} \begin{aligned} f(\theta _i | rest) \propto N_T (\mu _c, \varSigma _c)\\ \varSigma _c = (\varSigma _{\theta ,s,r,k}^{-1} + \varSigma _{y}^{-1})^{-1}\\ \mu _c = \varSigma _c [\varSigma _{y}^{-1} (y_i - Z \alpha _i - X \beta _i) + \varSigma _{\theta ,s,r,k} \overline{\theta _{s,r,k}}]\\ f(\sigma _{\theta _{s,r,k,i}}^2 | rest) = IGa(c_0^{\theta _{s,r,k,i}} + \frac{m}{2}, c_1^{\theta _{s,r,k,i}} + \frac{1}{2} \sum _{j=1}^m \theta _{s,r,k,i}^2)\\ i = 1,..,T \end{aligned} \end{aligned}$$
    (10)

    where m is the number of data points belonging to that cluster.

  • \(\sigma _{\epsilon _i}^2\): The posterior for \(\sigma _{\epsilon _i}^2\) is:

    $$\begin{aligned} \begin{aligned} f(\sigma _{\epsilon _i}^2 | rest) \propto IGa(c_0^{\epsilon } + \frac{T}{2}, c_1^{\epsilon } + \frac{1}{2} M_i^{'}M_i)\\ M_i = (y_i - Z \alpha _i - X \beta _i - \theta _i) \end{aligned} \end{aligned}$$
    (11)
  • Level k posterior: The posterior for any level of hierarchy except for top-most level consists of following updates:

    $$\begin{aligned} \begin{aligned} f(\beta _k | rest) \propto N_D(\mu _g, \varSigma _g)\\ \varSigma _g = (\varSigma _{\beta ,r,k}^{-1} + \varSigma _{\beta ,k}^{-1} )^{-1}\\ \mu _g = \varSigma _g (\varSigma _{\beta ,k}\overline{\beta _{k}} + \varSigma _{\beta ,r,k}^{-1} \beta _{r,k})\\ f(\sigma _{\beta _{k,i}}^2 | rest) = IGa(c_0^{\beta _{k,i}} \frac{R}{2}, c_1^{\beta _{k,i}} \sum _{j=1}^S \beta _{k,i}^2)\\ f(\theta _k | rest) \propto N_D(\mu _h, \varSigma _h)\\ \varSigma _h = (\varSigma _{\theta ,r,k}^{-1} + \varSigma _{\theta ,k}^{-1} )^{-1}\\ \mu _h = \varSigma _h (\varSigma _{\theta ,k}\overline{\theta _{k}} + \varSigma _{\theta ,r,k}^{-1} \theta _{r,k})\\ f(\sigma _{\theta _{k,i}}^2 | rest) = IGa(c_0^{\theta _{k,i}} \frac{R}{2}, c_1^{\theta _{k,i}} \sum _{j=1}^R \beta _{k,i}^2) \end{aligned} \end{aligned}$$
    (12)
  • Top level posterior: The posterior at top-most level is:

    $$\begin{aligned} \begin{aligned} f(\beta | rest) \propto N_D(\mu _e, \varSigma _e)\\ \varSigma _e = (\varSigma _{\beta ,k}^{-1} + \varSigma _{\beta }^{-1} )^{-1}\\ \mu _e = \varSigma _e (\varSigma _{\beta ,k}^{-1} \beta _{k})\\ f(\sigma _{\beta _{i}}^2 | rest) = IGa(c_0^{\beta _{i}} \frac{K}{2}, c_1^{\beta _{i}} \sum _{j=1}^K \beta _{i}^2)\\ f(\theta | rest) \propto N_D(\mu _f, \varSigma _f)\\ \varSigma _f = (\varSigma _{\theta ,k}^{-1} + \varSigma _{\theta }^{-1} )^{-1}\\ \mu _f = \varSigma _f (\varSigma _{\theta ,k}^{-1} \theta _{k})\\ f(\sigma _{\theta }^2 | rest) = IGa(\frac{KT}{2}, \frac{1}{2} \sum _{j=1}^K \theta _j^{'} Q^{-1}\theta _j)\\ f(\rho | rest) \propto |Q|^{-K/2} \exp {\frac{-1}{2 \sigma _{\theta }^2} \sum _{j=1}^K \theta _j^{'} Q^{-1}\theta _j} \frac{\sqrt{1 + \rho ^2}}{1 - \rho ^2} \end{aligned} \end{aligned}$$
    (13)

    where \(Q_{ij} = \rho ^{|i-j|}\) for \(i,j = 1,..,T\).

  • Posterior for GDD and p: The posterior for GDD is conjugate with multinomial sampling. The probability p is updated based on the fit of the data with respect to the individual clusters lowest level mean using the likelihood function. The complete detail for GDD posterior characterization can be found in [6].

This completes the posterior characterization of our approach.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kafle, S., Dou, D. (2016). A Heterogeneous Clustering Approach for Human Activity Recognition. In: Madria, S., Hara, T. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2016. Lecture Notes in Computer Science(), vol 9829. Springer, Cham. https://doi.org/10.1007/978-3-319-43946-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43946-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43945-7

  • Online ISBN: 978-3-319-43946-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics