Skip to main content

2 \(\mathcal{R}\)-trivial Monoids

  • Chapter
  • First Online:
Representation Theory of Finite Monoids

Part of the book series: Universitext ((UTX))

  • 2132 Accesses

Abstract

This chapter studies \(\mathcal{R}\)-trivial monoids, that is, monoids where Green’s relation \(\mathcal{R}\) is the equality relation. They form an important class of finite monoids, which have quite recently found applications in the analysis of Markov chains; see Chapter 14 The first section of this chapter discusses lattices and prime ideals of arbitrary finite monoids, as they shall play an important role in both the general theory and in the structure theory of \(\mathcal{R}\)-trivial monoids. The second section concerns \(\mathcal{R}\)-trivial monoids and, in particular, left regular bands, which are precisely the regular \(\mathcal{R}\)-trivial monoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Berg, N. Bergeron, S. Bhargava, F. Saliola, Primitive orthogonal idempotents for R-trivial monoids. J. Algebra 348, 446–461 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bidigare, P. Hanlon, D. Rockmore, A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements. Duke Math. J. 99 (1), 135–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. K.S. Brown, Semigroup and ring theoretical methods in probability, in Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Inst. Commun., vol. 40 (American Mathematical Society, Providence, RI, 2004), pp. 3–26

    Google Scholar 

  4. R.W. Carter, Representation theory of the 0-Hecke algebra. J. Algebra 104 (1), 89–103 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.H. Clifford, Semigroups admitting relative inverses. Ann. Math. (2) 42, 1037–1049 (1941)

    Google Scholar 

  6. T. Denton, A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group. Electron. J. Comb. 18 (1), Research Paper 28, 20 pp. (2011) (electronic)

    Google Scholar 

  7. T. Denton, F. Hivert, A. Schilling, N. Thiéry, On the representation theory of finite \(\mathcal{J}\)-trivial monoids. Sém. Lothar. Comb. 64, Art. B64d, 34 pp. (2011) (electronic)

    Google Scholar 

  8. M. Fayers, 0-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra 199 (1–3), 27–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.-L. Grensing, V. Mazorchuk, Categorification of the Catalan monoid. Semigroup Forum 89 (1), 155–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Hivert, N.M. Thiéry, The Hecke group algebra of a Coxeter group and its representation theory. J. Algebra 321 (8), 2230–2258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Margolis, B. Steinberg, Quivers of monoids with basic algebras. Compos. Math. 148 (5), 1516–1560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Mazorchuk, B. Steinberg, Double Catalan monoids. J. Algebraic Comb. 36 (3), 333–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.N. Norton, 0-Hecke algebras. J. Aust. Math. Soc. Ser. A 27 (3), 337–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Petrich, The maximal semilattice decomposition of a semigroup. Bull. Am. Math. Soc. 69, 342–344 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Petrich, The maximal semilattice decomposition of a semigroup. Math. Z. 85, 68–82 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. F.V. Saliola, The face semigroup algebra of a hyperplane arrangement. Can. J. Math. 61 (4), 904–929 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Schocker, Radical of weakly ordered semigroup algebras. J. Algebraic Comb. 28 (1), 231–234 (2008). With a foreword by N. Bergeron

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinberg, B. (2016). 2 \(\mathcal{R}\)-trivial Monoids. In: Representation Theory of Finite Monoids. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-43932-7_2

Download citation

Publish with us

Policies and ethics