Skip to main content

Diagnosing Keratoconus Using VHF Digital Ultrasound Epithelial Thickness Profiles

  • Chapter
  • First Online:
Keratoconus

Abstract

There have been significant advances in keratoconus screening over the past decade largely due to enhanced analysis of corneal tomography; however, there remain some equivocal cases where a confident diagnosis cannot be made. Epithelial thickness mapping provides adjunctive diagnostic information that can help confirm or exclude keratoconus in suspicious cases. The epithelium has the ability to alter its thickness profile to re-establish a smooth, symmetrical optical outer corneal surface and either partially or totally mask stromal surface irregularities from front surface topography. In keratoconus, this manifests as epithelial thinning over the cone surrounded by an annulus of epithelial thickening, and increasing thinning and thickening with disease progression. In early keratoconus, this remodelling can be enough to completely mask the stromal surface cone, resulting in an apparently normal front surface topography. This can explain some reports of “ectasia without a cause”. In an eye with an eccentric back surface apex, a coincident epithelial doughnut pattern would confirm keratoconus, whereas the lack of localized epithelial thinning would exclude keratoconus. Very high-frequency digital ultrasound can provide maps of epithelial thickness for a 10 mm diameter, and OCT can do this for up to a 9 mm diameter. A number of groups are now working on developing automated algorithms to screen for keratoconus based on the epithelial thickness profile with encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio Jr R, Wilson SE. Complications of laser in situ keratomileusis: etiology, prevention, and treatment. J Refract Surg. 2001;17(3):350–79.

    PubMed  Google Scholar 

  2. Seiler T, Koufala K, Richter G. Iatrogenic keratectasia after laser in situ keratomileusis. J Refract Surg. 1998;14(3):312–7.

    CAS  PubMed  Google Scholar 

  3. Krachmer JH, Feder RF, Belin MW. Keratoconus and related non-inflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293–322.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson SE, Klyce SD. Screening for corneal topographic abnormalities before refractive surgery. Ophthalmology. 1994;101(1):147–52.

    Article  CAS  PubMed  Google Scholar 

  5. Klyce SD. Computer-assisted corneal topography. High-resolution graphic presentation and analysis of keratoscopy. Invest Ophthalmol Vis Sci. 1984;25(12):1426–35.

    CAS  PubMed  Google Scholar 

  6. Rabinowitz YS, Yang H, Brickman Y, Akkina J, Riley C, Rotter JI, et al. Videokeratography database of normal human corneas. Br J Ophthalmol. 1996;80(7):610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989;5(6):400–8.

    CAS  PubMed  Google Scholar 

  8. Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg. 1995;11(5):371–9.

    CAS  PubMed  Google Scholar 

  9. Rabinowitz YS. Tangential vs sagittal videokeratographs in the “early” detection of keratoconus. Am J Ophthalmol. 1996;122(6):887–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25(10):1327–35.

    Article  CAS  PubMed  Google Scholar 

  11. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.

    CAS  PubMed  Google Scholar 

  12. Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol. 1995;113(7):870–4.

    Article  CAS  PubMed  Google Scholar 

  13. Nesburn AB, Bahri S, Salz J, Rabinowitz YS, Maguen E, Hofbauer J, et al. Keratoconus detected by videokeratography in candidates for photorefractive keratectomy. J Refract Surg. 1995;11(3):194–201.

    CAS  PubMed  Google Scholar 

  14. Chastang PJ, Borderie VM, Carvajal-Gonzalez S, Rostene W, Laroche L. Automated keratoconus detection using the EyeSys videokeratoscope. J Cataract Refract Surg. 2000;26(5):675–83.

    Article  CAS  PubMed  Google Scholar 

  15. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35(6):2749–57.

    CAS  PubMed  Google Scholar 

  16. Kalin NS, Maeda N, Klyce SD, Hargrave S, Wilson SE. Automated topographic screening for keratoconus in refractive surgery candidates. Clao J. 1996;22(3):164–7.

    CAS  PubMed  Google Scholar 

  17. Auffarth GU, Wang L, Volcker HE. Keratoconus evaluation using the Orbscan Topography System. J Cataract Refract Surg. 2000;26(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rao SN, Raviv T, Majmudar PA, Epstein RJ. Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology. 2002;109(9):1642–6.

    Article  PubMed  Google Scholar 

  19. Tomidokoro A, Oshika T, Amano S, Higaki S, Maeda N, Miyata K. Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology. 2000;107(7):1328–32.

    Article  CAS  PubMed  Google Scholar 

  20. Ambrosio Jr R, Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg. 2006;32(11):1851–9.

    Article  PubMed  Google Scholar 

  21. de Sanctis U, Loiacono C, Richiardi L, Turco D, Mutani B, Grignolo FM. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115(9):1534–9.

    Article  PubMed  Google Scholar 

  22. Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Invest Ophthalmol Vis Sci. 2012;53(6):2978–92.

    Article  PubMed  Google Scholar 

  23. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–62.

    Article  PubMed  Google Scholar 

  24. Ambrosio Jr R, Caiado AL, Guerra FP, Louzada R, Roy AS, Luz A, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27(10):753–8.

    Article  PubMed  Google Scholar 

  25. Fontes BM, Ambrosio Jr R, Salomao M, Velarde GC, Nose W. Biomechanical and tomographic analysis of unilateral keratoconus. J Refract Surg. 2010;26(9):677–81.

    Article  PubMed  Google Scholar 

  26. Bae GH, Kim JR, Kim CH, Lim DH, Chung ES, Chung TY. Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam. Am J Ophthalmol. 2014;157(1):103–9. e1.

    Article  PubMed  Google Scholar 

  27. Muftuoglu O, Ayar O, Ozulken K, Ozyol E, Akinci A. Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg. 2013;39(9):1348–57.

    Article  PubMed  Google Scholar 

  28. Chan C, Ang M, Saad A, Chua D, Mejia M, Lim L, et al. Validation of an objective scoring system for forme fruste keratoconus detection and post-LASIK ectasia risk assessment in Asian eyes. Cornea. 2015;34(9):996–1004.

    Article  PubMed  Google Scholar 

  29. Saad A, Gatinel D. Validation of a new scoring system for the detection of early forme of keratoconus. Int J Kerat Ect Cor Dis. 2012;1(2):100–8.

    Google Scholar 

  30. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51(11):5546–55.

    Article  PubMed  Google Scholar 

  31. Mahmoud AM, Nunez MX, Blanco C, Koch DD, Wang L, Weikert MP, et al. Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus. Am J Ophthalmol. 2013;156(6):1102–11.

    Article  PubMed  Google Scholar 

  32. Randleman JB, Trattler WB, Stulting RD. Validation of the ectasia risk score system for preoperative laser in situ keratomileusis screening. Am J Ophthalmol. 2008;145(5):813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115(1):37–50.

    Article  PubMed  Google Scholar 

  34. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–9.

    Article  CAS  PubMed  Google Scholar 

  35. Speicher L, Gottinger W. Progressive corneal ectasia after laser in situ keratomileusis (LASIK). Klin Monatsbl Augenheilkd. 1998;213(4):247–51.

    Article  CAS  PubMed  Google Scholar 

  36. Geggel HS, Talley AR. Delayed onset keratectasia following laser in situ keratomileusis. J Cataract Refract Surg. 1999;25(4):582–6.

    Article  CAS  PubMed  Google Scholar 

  37. Amoils SP, Deist MB, Gous P, Amoils PM. Iatrogenic keratectasia after laser in situ keratomileusis for less than −4.0 to −7.0 diopters of myopia. J Cataract Refract Surg. 2000;26(7):967–77.

    Article  CAS  PubMed  Google Scholar 

  38. McLeod SD, Kisla TA, Caro NC, McMahon TT. Iatrogenic keratoconus: corneal ectasia following laser in situ keratomileusis for myopia. Arch Ophthalmol. 2000;118(2):282–4.

    CAS  PubMed  Google Scholar 

  39. Holland SP, Srivannaboon S, Reinstein DZ. Avoiding serious corneal complications of laser assisted in situ keratomileusis and photorefractive keratectomy. Ophthalmology. 2000;107(4):640–52.

    Article  CAS  PubMed  Google Scholar 

  40. Schmitt-Bernard CF, Lesage C, Arnaud B. Keratectasia induced by laser in situ keratomileusis in keratoconus. J Refract Surg. 2000;16(3):368–70.

    CAS  PubMed  Google Scholar 

  41. Rao SN, Epstein RJ. Early onset ectasia following laser in situ keratomileusus: case report and literature review. J Refract Surg. 2002;18(2):177–84.

    PubMed  Google Scholar 

  42. Malecaze F, Coullet J, Calvas P, Fournie P, Arne JL, Brodaty C. Corneal ectasia after photorefractive keratectomy for low myopia. Ophthalmology. 2006;113(5):742–6.

    Article  PubMed  Google Scholar 

  43. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110(2):267–75.

    Article  PubMed  Google Scholar 

  44. Leccisotti A. Corneal ectasia after photorefractive keratectomy. Graefes Arch Clin Exp Ophthalmol. 2007;245(6):869–75.

    Article  PubMed  Google Scholar 

  45. Reinstein DZ, Archer T. Combined Artemis very high-frequency digital ultrasound-assisted transepithelial phototherapeutic keratectomy and wavefront-guided treatment following multiple corneal refractive procedures. J Cataract Refract Surg. 2006;32(11):1870–6.

    Article  PubMed  Google Scholar 

  46. Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014;30(12):800–2.

    Article  Google Scholar 

  47. Reinstein DZ, Silverman RH, Trokel SL, Coleman DJ. Corneal pachymetric topography. Ophthalmology. 1994;101(3):432–8.

    Article  CAS  PubMed  Google Scholar 

  48. Reinstein DZ, Silverman RH, Raevsky T, Simoni GJ, Lloyd HO, Najafi DJ, et al. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000;16(4):414–30.

    CAS  PubMed  Google Scholar 

  49. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571–81.

    PubMed  PubMed Central  Google Scholar 

  50. Reinstein DZ, Silverman RH, Coleman DJ. High-frequency ultrasound measurement of the thickness of the corneal epithelium. Refract Corneal Surg. 1993;9(5):385–7.

    CAS  PubMed  Google Scholar 

  51. Prakash G, Agarwal A, Mazhari AI, Chari M, Kumar DA, Kumar G, et al. Reliability and reproducibility of assessment of corneal epithelial thickness by fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(6):2580–5.

    Article  PubMed  Google Scholar 

  52. Ge L, Shen M, Tao A, Wang J, Dou G, Lu F. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices. Eye Contact Lens. 2012;38(3):150–7.

    Article  PubMed  Google Scholar 

  53. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bentivoglio AR, Bressman SB, Cassetta E, Carretta D, Tonali P, Albanese A. Analysis of blink rate patterns in normal subjects. Mov Disord. 1997;12(6):1028–34.

    Article  CAS  PubMed  Google Scholar 

  55. Doane MG. Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am J Ophthalmol. 1980;89(4):507–16.

    Article  CAS  PubMed  Google Scholar 

  56. Young G, Hunt C, Covey M. Clinical evaluation of factors influencing toric soft contact lens fit. Optom Vis Sci. 2002;79(1):11–9.

    Article  PubMed  Google Scholar 

  57. Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom Vis Sci. 2009;86(8):E1006–14.

    Article  PubMed  Google Scholar 

  58. Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea. 1992;11(6):553–9.

    Article  CAS  PubMed  Google Scholar 

  59. Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg. 2006;22(5):486–93.

    PubMed  Google Scholar 

  60. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial, stromal and corneal thickness in the keratoconic cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010;26(4):259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rocha KM, Perez-Straziota CE, Stulting RD, Randleman JB. SD-OCT analysis of regional epithelial thickness profiles in keratoconus, postoperative corneal ectasia, and normal eyes. J Refract Surg. 2013;29(3):173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kanellopoulos AJ, Aslanides IM, Asimellis G. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor? Clin Ophthalmol. 2012;6:789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sandali O, El Sanharawi M, Temstet C, Hamiche T, Galan A, Ghouali W, et al. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification. Ophthalmology. 2013;120(12):2403–12.

    Article  PubMed  Google Scholar 

  64. Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nystrom H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80(6):545–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2012;28(3):195–201.

    Article  PubMed  Google Scholar 

  67. Kanellopoulos AJ, Asimellis G. Longitudinal postoperative Lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg. 2014;30(3):166–71.

    PubMed  Google Scholar 

  68. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010;26(8):555–64.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Reinstein DZ, Archer TJ, Gobbe M. Epithelial thickness up to 26 years after radial keratotomy: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2011;27(8):618–24.

    Article  PubMed  Google Scholar 

  70. Reinstein DZ, Srivannaboon S, Holland SP. Epithelial and stromal changes induced by intacs examined by three-dimensional very high-frequency digital ultrasound. J Refract Surg. 2001;17(3):310–8.

    CAS  PubMed  Google Scholar 

  71. Reinstein DZ, Silverman RH, Sutton HF, Coleman DJ. Very high-frequency ultrasound corneal analysis identifies anatomic correlates of optical complications of lamellar refractive surgery: anatomic diagnosis in lamellar surgery. Ophthalmology. 1999;106(3):474–82.

    Article  CAS  PubMed  Google Scholar 

  72. Reinstein DZ, Archer TJ, Gobbe M. Refractive and topographic errors in topography-guided ablation produced by epithelial compensation predicted by three-dimensional Artemis very high-frequency digital ultrasound stromal and epithelial thickness mapping. J Refract Surg. 2012;28(9):657–63.

    Article  PubMed  Google Scholar 

  73. Reinstein DZ, Archer TJ, Gobbe M. Improved effectiveness of trans-epithelial phototherapeutic keratectomy versus topography-guided ablation degraded by epithelial compensation on irregular stromal surfaces [plus video]. J Refract Surg. 2013;29(8):526–33.

    Article  PubMed  Google Scholar 

  74. Reinstein DZ, Gobbe M, Archer TJ, Youssefi G, Sutton HF. Stromal surface topography-guided custom ablation as a repair tool for corneal irregular astigmatism. J Refract Surg. 2015;31(1):54–9.

    Article  PubMed  Google Scholar 

  75. Reinstein DZ, Archer TJ, Dickeson ZI, Gobbe M. Trans-epithelial phototherapeutic keratectomy protocol for treating irregular astigmatism based population on epithelial thickness measurements by Artemis very high-frequency digital ultrasound. J Refract Surg. 2014;30(6):380–7.

    Article  PubMed  Google Scholar 

  76. Reinstein DZ, Gobbe M, Archer TJ, Couch D. Epithelial thickness profile as a method to evaluate the effectiveness of collagen cross-linking treatment after corneal ectasia. J Refract Surg. 2011;27(5):356–63.

    Article  PubMed  Google Scholar 

  77. Vinciguerra P, Roberts CJ, Albe E, Romano MR, Mahmoud A, Trazza S, et al. Corneal curvature gradient map: a new corneal topography map to predict the corneal healing process. J Refract Surg. 2014;30(3):202–7.

    Article  PubMed  Google Scholar 

  78. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25(7):604–10.

    PubMed  Google Scholar 

  79. Klein SR, Epstein RJ, Randleman JB, Stulting RD. Corneal ectasia after laser in situ keratomileusis in patients without apparent preoperative risk factors. Cornea. 2006;25(4):388–403.

    Article  PubMed  Google Scholar 

  80. Silverman RH, Urs R, Roychoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci. 2014;55(3):1580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Temstet C, Sandali O, Bouheraoua N, Hamiche T, Galan A, El Sanharawi M, et al. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg. 2015;41(4):812–20.

    Article  PubMed  Google Scholar 

  82. Ambrosio Jr R, Faria-Correia F, Ramos I, Valbon BF, Lopes B, Jardim D, et al. Enhanced screening for ectasia susceptibility among refractive candidates: the role of corneal tomography and biomechanics. Curr Ophthalmol Rep. 2013;1(1):28–38.

    Article  Google Scholar 

  83. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio Jr R, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–69.

    Article  PubMed  Google Scholar 

  84. Ambrosio Jr R, Dawson DG, Salomao M, Guerra FP, Caiado AL, Belin MW. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg. 2010;26(11):906–11.

    Article  PubMed  Google Scholar 

  85. Reinstein DZ, Gobbe M, Archer TJ. Ocular biomechanics: measurement parameters and terminology. J Refract Surg. 2011;27(6):396–7.

    Article  PubMed  Google Scholar 

  86. Vellara HR, Patel DV. Biomechanical properties of the keratoconic cornea: a review. Clin Exp Optom. 2015;98(1):31–8.

    Article  PubMed  Google Scholar 

  87. Pinero DP, Alcon N. Corneal biomechanics: a review. Clin Exp Optom. 2014;98:107–16.

    Article  PubMed  Google Scholar 

  88. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55(7):4490–5.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Abu-Amero KK, Al-Muammar AM, Kondkar AA. Genetics of keratoconus: where do we stand? J Ophthalmol. 2014;2014:641708.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Burdon KP, Vincent AL. Insights into keratoconus from a genetic perspective. Clin Exp Optom. 2013;96(2):146–54.

    Article  PubMed  Google Scholar 

  91. Rabinowitz YS, Dong L, Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5. Invest Ophthalmol Vis Sci. 2005;46(4):1239–46.

    Article  PubMed  Google Scholar 

  92. Abou Shousha M, Perez VL, Fraga Santini Canto AP, Vaddavalli PK, Sayyad FE, Cabot F, et al. The use of Bowman’s layer vertical topographic thickness map in the diagnosis of keratoconus. Ophthalmology. 2014;121(5):988–93.

    Article  PubMed  Google Scholar 

  93. Yadav R, Kottaiyan R, Ahmad K, Yoon G. Epithelium and Bowman’s layer thickness and light scatter in keratoconic cornea evaluated using ultrahigh resolution optical coherence tomography. J Biomed Opt. 2012;17(11):116010.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Reinstein DZ, Archer TJ, Gobbe M. Stability of LASIK in corneas with topographic suspect keratoconus, with keratoconus excluded by epithelial thickness mapping. J Refract Surg. 2009;25(7):569–77.

    PubMed  Google Scholar 

  95. Reinstein DZ, Archer TJ, Gobbe M. Stability of LASIK in corneas with topographic suspect keratoconus confirmed non-keratoconic by epithelial thickness mapping: 2-years follow-up. San Francisco: AAO; 2009.

    Google Scholar 

Download references

Compliance with Ethical Requirements

Dr. Reinstein is a consultant for Carl Zeiss Meditec (Jena, Germany). Drs Reinstein and Silverman have a proprietary interest in the Artemis technology (ArcScan Inc., Golden, Colorado) and are authors of patents related to VHF digital ultrasound administered by the Center for Technology Licensing at Cornell University, Ithaca, New York. Timothy Archer, Marine Gobbe, and Raksha Urs declare that they have no conflict of interest.

Informed Consent: All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

No animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Z. Reinstein MD, MA(Cantab), FRCSC, FRC Ophth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reinstein, D.Z., Archer, T.J., Gobbe, M., Urs, R., Silverman, R.H. (2017). Diagnosing Keratoconus Using VHF Digital Ultrasound Epithelial Thickness Profiles. In: Alió, J. (eds) Keratoconus. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-43881-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43881-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43879-5

  • Online ISBN: 978-3-319-43881-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics