Skip to main content
Book cover

Keratoconus pp 141–150Cite as

Role of Corneal Biomechanics in the Diagnosis and Management of Keratoconus

  • Chapter
  • First Online:

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Keratoconus, the occurrence and development of which is associated with corneal thinning and conical protrusion causing irregular astigmatism, is a bilateral non-inflammatory degenerative corneal disease. With the disruption of the collagen organisation, the cornea loses its shape and function resulting in progressive visual degradation. Currently, corneal topography remains the most important tool for the diagnosis of keratoconus. However, this approach may lead to false negatives among the patient population in the subclinical phase. It is now hypothesised that biomechanical destabilisation of the cornea may take place ahead of the topographic evidence of keratoconus. Therefore, accurate characterisation of in vivo biomechanical properties could possibly be used to assist with diagnosis and management, particularly in the early stages of the disease. This chapter provides a summary of the definition, diagnosis and management strategies for keratoconus based on corneal biomechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auffarth GU, Wang L, Völcker HE. Keratoconus evaluation using the Orbscan topography system. J Cataract Refract Surg. 2000;26(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  2. Weed KH, McGhee CN, MacEwen CJ. Atypical unilateral superior keratoconus in young males. Cont Lens Anterior Eye. 2005;28(4):177–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319.

    Article  CAS  PubMed  Google Scholar 

  4. Wagner H, Barr JT, Zadnik K. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study: methods and findings to date. Cont Lens Anterior Eye. 2007;30(4):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weed KH, MacEwen CJ, Giles T, et al. The Dundee University Scottish Keratoconus study: demographics, corneal signs, associated diseases, and eye rubbing. Eye (Lond). 2008;22(4):534–41.

    Article  CAS  Google Scholar 

  6. Owens H, Gamble GD, Bjornholdt MC, et al. Topographic indications of emerging keratoconus in teenage New Zealanders. Cornea. 2007;26(3):312–8.

    Article  PubMed  Google Scholar 

  7. Pearson A, Soneji B, Sarvananthan N, Sandford-Smith J. Does ethnic origin influence the incidence or severity of keratoconus? Eye (Lond). 2000;14(Pt4):625–8.

    Article  Google Scholar 

  8. Georgiou T, Funnell CL, Cassels-Brown A, O'Conor R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye (Lond). 2004;18(4):379–83.

    Article  CAS  Google Scholar 

  9. Li X, Rabinowitz Y, Rasheed K, Yang H. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology. 2004;111(3):440–6.

    Article  PubMed  Google Scholar 

  10. Gomes JA, Tan D, Rapuano CJ, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–69.

    Article  PubMed  Google Scholar 

  11. Cristina Kenney M, Brown DJ. The cascade hypothesis of keratoconus. Cont Lens Anterior Eye. 2003;26(3):139–46.

    Article  CAS  PubMed  Google Scholar 

  12. Kenney MC, Chwa M, Atilano SR, et al. Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest Ophthalmol Vis Sci. 2005;46(3):823–32.

    Article  PubMed  Google Scholar 

  13. Ku JY, Niederer RL, Patel DV, et al. Laser scanning in vivo confocal analysis of keratocyte density in keratoconus. Ophthalmology. 2008;115(5):845–50.

    Article  PubMed  Google Scholar 

  14. Maatta M, Vaisanen T, Vaisanen MR, et al. Altered expression of type XIII collagen in keratoconus and scarred human cornea: increased expression in scarred cornea is associated with myofibroblast transformation. Cornea. 2006;25(4):448–53.

    Article  PubMed  Google Scholar 

  15. Maatta M, Heljasvaara R, Sormunen R, et al. Differential expression of collagen types XVIII/endostatin and XV in normal, keratoconus, and scarred human corneas. Cornea. 2006;25(3):341–9.

    Article  PubMed  Google Scholar 

  16. Fullwood NJ, Tuft SJ, Malik NS, et al. Synchrotron x-ray diffraction studies of keratoconus corneal stroma. Invest Ophthalmol Vis Sci. 1992;33(5):1734–41.

    CAS  PubMed  Google Scholar 

  17. Meek K, Tuft S, Huang Y, et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci. 2005;46(6):1948–56.

    Article  PubMed  Google Scholar 

  18. Akhtar S, Bron AJ, Salvi SM, et al. Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol. 2008;86(7):764–72.

    Article  PubMed  Google Scholar 

  19. Morishige N, Wahlert AJ, Kenney MC, et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci. 2007;48(3):1087–94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meek KM, Blamires T, Elliott GF, et al. The organisation of collagen fibrils in the human corneal stroma: a synchrotron X-ray diffraction study. Curr Eye Res. 1987;6(7):841–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sherwin T, Brookes NH. Morphological changes in keratoconus: pathology or pathogenesis. Clin Experiment Ophthalmol. 2004;32(2):211–7.

    Article  PubMed  Google Scholar 

  22. Pinero DP, Nieto JC, Lopez-Miguel A. Characterization of corneal structure in keratoconus. J Cataract Refract Surg. 2012;38(12):2167–83.

    Article  PubMed  Google Scholar 

  23. Pinero DP, Alio JL, Barraquer RI, et al. Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci. 2010;51(4):1948–55.

    Article  PubMed  Google Scholar 

  24. Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol. 1988;66(2):134–40.

    Article  CAS  Google Scholar 

  25. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31(4):435–41.

    Article  CAS  PubMed  Google Scholar 

  26. Nash IS, Greene PR, Foster CS. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res. 1982;35(5):413–24.

    Article  CAS  PubMed  Google Scholar 

  27. Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862–9.

    Article  PubMed  Google Scholar 

  28. Seiler T, Huhle S, Spoerl E, Kunath H. Manifest diabetes and keratoconus: a retrospective case-control study. Graefes Arch Clin Exp Ophthalmol. 2000;238(10):822–5.

    Article  CAS  PubMed  Google Scholar 

  29. Fontes BM, Ambrosio Jr R, Velarde GC, Nose W. Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. J Refract Surg. 2011;27(3):209–15.

    PubMed  Google Scholar 

  30. Johnson RD, Nguyen MT, Lee N, Hamilton DR. Corneal biomechanical properties in normal, forme fruste keratoconus, and manifest keratoconus after statistical correction for potentially confounding factors. Cornea. 2011;30(5):516–23.

    Article  PubMed  Google Scholar 

  31. Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95(6):793–8.

    Article  PubMed  Google Scholar 

  32. Wolffsohn JS, Safeen S, Shah S, Laiquzzaman M. Changes of corneal biomechanics with keratoconus. Cornea. 2012;31(8):849–54.

    Article  PubMed  Google Scholar 

  33. Valbon BF, Ambrosio Jr R, Fontes BM, et al. Ocular biomechanical metrics by CorVis ST in healthy Brazilian patients. J Refract Surg. 2014;30(7):468–73.

    Article  PubMed  Google Scholar 

  34. Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a non contact Scheimpflug tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651–9.

    Google Scholar 

  35. Ford MR, Dupps Jr WJ, Rollins AM, et al. Method for optical coherence elastography of the cornea. J Biomed Opt. 2011;16(1):016005.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Touboul D, Gennisson JL, Nguyen TM, et al. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci. 2014;55(3):1976–84.

    Article  PubMed  Google Scholar 

  37. Scarcelli G, Besner S, Pineda R, et al. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 2015;133(4):480–2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Beckman Rehnman J, Behndig A, Hallberg P, Linden C. Increased corneal hysteresis after corneal collagen crosslinking: a study based on applanation resonance technology. JAMA Ophthalmol. 2014;132(12):1426–32.

    Article  PubMed  Google Scholar 

  39. Urs R, Lloyd HO, Silverman RH. Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy. J Ultrasound Med. 2014;33(8):1417–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beshtawi IM, Akhtar R, Hillarby MC, et al. Biomechanical changes of collagen cross-linking on human keratoconic corneas using scanning acoustic microscopy. Curr Eye Res. 2015;41(5):609–15.

    PubMed  Google Scholar 

  41. Bilgin LK, Yilmaz S, Araz B, et al. 30 years of contact lens prescribing for keratoconic patients in Turkey. Cont Lens Anterior Eye. 2009;32(1):16–21.

    Article  PubMed  Google Scholar 

  42. Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study. Invest Ophthalmol Vis Sci. 1998;39(13):2537–46.

    CAS  PubMed  Google Scholar 

  43. Lim N, Vogt U. Characteristics and functional outcomes of 130 patients with keratoconus attending a specialist contact lens clinic. Eye (Lond). 2002;16(1):54–9.

    Article  CAS  Google Scholar 

  44. Hayashi T, Fatt I. Forces retaining a contact lens on the eye between blinks. Am J Optom Physiol Opt. 1980;57(8):485–507.

    Article  CAS  PubMed  Google Scholar 

  45. Jenkins JT, Shimbo M. The distribution of pressure behind a soft contact lens. J Biomech Eng. 1984;106(1):62–5.

    Article  CAS  PubMed  Google Scholar 

  46. Horst CR, Brodland B, Jones LW, Brodland GW. Measuring the modulus of silicone hydrogel contact lenses. Optom Vis Sci. 2012;89(10):1468–76.

    Article  PubMed  Google Scholar 

  47. Elsheikh A, Geraghty B, Rama P, et al. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McMonnies CW. Keratoconus fittings: apical clearance or apical support? Eye Contact Lens. 2004;30(3):147–55.

    Article  PubMed  Google Scholar 

  49. Hartstein J. Keratoconus that developed in patients wearing corneal contact lenses. Report of four cases. Arch Ophthalmol. 1968;80(3):345–6.

    Article  CAS  PubMed  Google Scholar 

  50. Korb DR, Finnemore VM, Herman JP. Apical changes and scarring in keratoconus as related to contact lens fitting techniques. J Am Optom Assoc. 1982;53(3):199–205.

    CAS  PubMed  Google Scholar 

  51. Schanzlin DJ, Asbell PA, Burris TE, Durrie DS. The intrastromal corneal ring segments. Phase II results for the correction of myopia. Ophthalmology. 1997;104(7):1067–78.

    Article  CAS  PubMed  Google Scholar 

  52. Rabinowitz YS. Intacs for keratoconus. Curr Opin Ophthalmol. 2007;18(4):279–83.

    Article  PubMed  Google Scholar 

  53. Alfonso JF, Lisa C, Fernandez-Vega L, et al. Intrastromal corneal ring segment implantation in 219 keratoconic eyes at different stages. Graefes Arch Clin Exp Ophthalmol. 2011;249(11):1705–12.

    Article  PubMed  Google Scholar 

  54. Akaishi L, Tzelikis PF, Raber IM. Ferrara intracorneal ring implantation and cataract surgery for the correction of pellucid marginal corneal degeneration. J Cataract Refract Surg. 2004;30(11):2427–30.

    Article  PubMed  Google Scholar 

  55. Zare MA, Hashemi H, Salari MR. Intracorneal ring segment implantation for the management of keratoconus: safety and efficacy. J Cataract Refract Surg. 2007;33(11):1886–91.

    Article  PubMed  Google Scholar 

  56. Dauwe C, Touboul D, Roberts CJ, et al. Biomechanical and morphological corneal response to placement of intrastromal corneal ring segments for keratoconus. J Cataract Refract Surg. 2009;35(10):1761–7.

    Article  PubMed  Google Scholar 

  57. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–7.

    Article  CAS  PubMed  Google Scholar 

  58. Hayes S, Kamma-Lorger CS, Boote C, et al. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS One. 2013;8(1), e52860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem. 2011;286(15):13011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006;17(4):356–60.

    Article  PubMed  Google Scholar 

  61. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study. Am J Ophthalmol. 2010;149(4):585–93.

    Article  CAS  PubMed  Google Scholar 

  62. Sray WA, Cohen EJ, Rapuano CJ, Laibson PR. Factors associated with the need for penetrating keratoplasty in keratoconus. Cornea. 2002;21(8):784–6.

    Article  PubMed  Google Scholar 

  63. Tuft SJ, Moodaley LC, Gregory WM, et al. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994;101(3):439–47.

    Article  CAS  PubMed  Google Scholar 

  64. Reeves SW, Stinnett S, Adelman RA, Afshari NA. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol. 2005;140(4):607–11.

    Article  PubMed  Google Scholar 

  65. Watson SL, Ramsay A, Dart JK, et al. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in patients with keratoconus. Ophthalmology. 2004;111(9):1676–82.

    Article  PubMed  Google Scholar 

  66. Funnell CL, Ball J, Noble BA. Comparative cohort study of the outcomes of deep lamellar keratoplasty and penetrating keratoplasty for keratoconus. Eye (Lond). 2006;20(5):527–32.

    Article  CAS  Google Scholar 

  67. Sugita J, Kondo J. Deep lamellar keratoplasty with complete removal of pathological stroma for vision improvement. Br J Ophthalmol. 1997;81(3):184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shimazaki J. The evolution of lamellar keratoplasty. Curr Opin Ophthalmol. 2000;11(4):217–23.

    Article  CAS  PubMed  Google Scholar 

  69. Hayes S, Young R, Boote C, et al. A structural investigation of corneal graft failure in suspected recurrent keratoconus. Eye (Lond). 2010;24(4):728–34.

    Article  CAS  Google Scholar 

  70. Farley MK, Pettit TH. Traumatic wound dehiscence after penetrating keratoplasty. Am J Ophthalmol. 1987;104(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  71. Pettinelli DJ, Starr CE, Stark WJ. Late traumatic corneal wound dehiscence after penetrating keratoplasty. Arch Ophthalmol. 2005;123(6):853–6.

    Article  PubMed  Google Scholar 

  72. Boote C, Dooley EP, Gardner SJ, et al. Quantification of collagen ultrastructure after penetrating keratoplasty—implications for corneal biomechanics. PLoS One. 2013;8(7), e68166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25(10):1161–7.

    CAS  PubMed  Google Scholar 

  74. Kling S, Marcos S. Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests. J Refract Surg. 2013;29(7):490–7.

    Article  PubMed  Google Scholar 

  75. Hosny M, Hassaballa MA, Shalaby A. Changes in corneal biomechanics following different keratoplasty techniques. Clin Ophthalmol. 2011;5:767–70.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Abdelkader A. Influence of different keratoplasty techniques on the biomechanical properties of the cornea. Acta Ophthalmol. 2013;91(7):e567–72.

    Article  PubMed  Google Scholar 

  77. Wollensak G, Sporl E, Mazzotta C, et al. Interlamellar cohesion after corneal crosslinking using riboflavin and ultraviolet A light. Br J Ophthalmol. 2011;95(6):876–80.

    Article  CAS  PubMed  Google Scholar 

  78. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18(7):718–22.

    Article  CAS  Google Scholar 

  79. Liu JH, Medeiros FA, Slight JR, Weinreb RN. Diurnal and nocturnal effects of brimonidine monotherapy on intraocular pressure. Ophthalmology. 2010;117(11):2075–9.

    Article  PubMed  Google Scholar 

  80. Dastiridou AI, Ginis HS, De Brouwere D, et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 2009;50(12):5718–22.

    Article  PubMed  Google Scholar 

  81. Boyce BL, Grazier JM, Jones RE, Nguyen TD. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials. 2008;29(28):3896–904.

    Article  CAS  PubMed  Google Scholar 

  82. Muller LJ, Pels E, Schurmans LR, Vrensen GF. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res. 2004;78(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  83. Coudrillier B, Tian J, Alexander S, et al. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012;53(4):1714–28.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Geraghty B, Jones SW, Rama P, et al. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater. 2012;16:181–91.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

FangJun Bao, Brendan Geraghty, QinMei Wang and Ahmed Elsheikh declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FangJun Bao Ph.D., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bao, F., Geraghty, B., Wang, Q., Elsheikh, A. (2017). Role of Corneal Biomechanics in the Diagnosis and Management of Keratoconus. In: Alió, J. (eds) Keratoconus. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-43881-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43881-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43879-5

  • Online ISBN: 978-3-319-43881-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics