Skip to main content
Book cover

Keratoconus pp 103–128Cite as

Geometrical Analysis of Corneal Topography

  • Chapter
  • First Online:
  • 1920 Accesses

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

The complexity of the structure and shape of the ocular globe, and specially the architecture of the cornea, supposes a particular challenge when a personalised geometric model of the cornea is searched with the aim of representing any morphological alteration when changing from a natural scenario to a pathological case. Therefore, it is essential to know the geometry of the anterior and posterior corneal surfaces to diagnose any pathology related to corneal morphology alteration and thus decide the posterior corrective treatment. With this aim, this chapter proposes a new concept of geometrical analysis of the cornea obtained from a personalised virtual solid model of the cornea, which is generated from a discrete and finite set of spatial points representative of both sides of the corneal surfaces provided by a corneal topographer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eklund A, Dufort P, Forsberg D, LaConte SM. Medical image processing on the GPU—past, present and future. Med Image Anal. 2013;17(8):1073–94. doi:10.1016/j.media.2013.05.008.

    Article  PubMed  Google Scholar 

  2. Ariza-Gracia MA, Zurita JF, Pinero DP, Rodriguez-Matas JF, Calvo B. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study. PLoS One 2015;10(3):e0121486. doi:10.1371/journal.pone.0121486.

  3. Cavas-Martínez F, Fernández-Pacheco DG, De La Cruz-Sánchez E, Nieto Martínez J, Fernández Cañavate FJ, Vega-Estrada A, et al. Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia. PLoS One 2014;9(10). doi:10.1371/journal.pone.0110249.

  4. Montalbán R. Caracterización y validación diagnóstica de la correlación de la geometría de las dos superficies de la córnea humana. Alicante: Universidad de Alicante; 2013.

    Google Scholar 

  5. Oie Y, Nishida K. Regenerative medicine for the cornea. Biomed Res Int. 2013;2013:428247. doi:10.1155/2013/428247.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pinero DP, Alio JL, Barraquer RI, Michael R, Jimenez R. Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci. 2010;51(4):1948–55. doi:10.1167/iovs.09-4177.

    Article  PubMed  Google Scholar 

  7. Levy D, Hutchings H, Rouland JF, Guell J, Burillon C, Arne JL, et al. Videokeratographic anomalies in familial keratoconus. Ophthalmology. 2004;111(5):867–74. doi:10.1016/j.ophtha.2003.12.024.

    Article  PubMed  Google Scholar 

  8. Vryghem JC, Devogelaere T, Stodulka P. Efficacy, safety, and flap dimensions of a new femtosecond laser for laser in situ keratomileusis. J Cataract Refract Surg. 2010;36(3):442–8. doi:10.1016/j.jcrs.2009.09.030.

    Article  PubMed  Google Scholar 

  9. Ambrosio Jr R, Caiado AL, Guerra FP, Louzada R, Roy AS, Luz A, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J Refract Surg. 2011;27(10):753–8. doi:10.3928/1081597x-20110721-01.

    Article  PubMed  Google Scholar 

  10. Alessio G, Boscia F, La Tegola MG, Sborgia C. Topography-driven excimer laser for the retreatment of decentralized myopic photorefractive keratectomy. Ophthalmology. 2001;108(9):1695–703.

    Article  CAS  PubMed  Google Scholar 

  11. Ribeiro FJ, Castanheira-Dinis A, Dias JM. Personalized pseudophakic model for refractive assessment. PLoS One. 2012;7(10), e46780. doi:10.1371/journal.pone.0046780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buey Salas MA, Peris MC. Biomecánica y Arquitectura Corneal. Amsterdam: Elsevier; 2014.

    Google Scholar 

  13. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297–319.

    Article  CAS  PubMed  Google Scholar 

  14. Pinero DP, Alio JL, Aleson A, Escaf Vergara M, Miranda M. Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J Cataract Refract Surg. 2010;36(5):814–25. doi:10.1016/j.jcrs.2009.11.012.

    Article  PubMed  Google Scholar 

  15. Dubbelman M, Weeber HA, van der Heijde RG, Volker-Dieben HJ. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand. 2002;80(4):379–83.

    Article  PubMed  Google Scholar 

  16. Ho JD, Tsai CY, Tsai RJ, Kuo LL, Tsai IL, Liou SW. Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg. 2008;34(1):137–45. doi:10.1016/j.jcrs.2007.09.033.

    Article  PubMed  Google Scholar 

  17. Dubbelman M, Sicam VA, Van der Heijde GL. The shape of the anterior and posterior surface of the aging human cornea. Vis Res. 2006;46(6–7):993–1001. doi:10.1016/j.visres.2005.09.021.

    Article  CAS  PubMed  Google Scholar 

  18. Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008;8(4):29.1. doi:10.1167/8.4.29.

    Article  Google Scholar 

  19. Calossi A. Corneal asphericity and spherical aberration. J Refract Surg. 2007;23(5):505–14.

    PubMed  Google Scholar 

  20. Yebra-Pimentel E, Gonzalez-Jeijome JM, Cervino A, Giraldez MJ, Gonzalez-Perez J, Parafita MA. Corneal asphericity in a young adult population. Clinical implications. Arch Soc Esp Oftalmol. 2004;79(8):385–92.

    Article  CAS  PubMed  Google Scholar 

  21. Perry HD, Buxton JN, Fine BS. Round and oval cones in keratoconus. Ophthalmology. 1980;87(9):905–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986;101(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  23. Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Cor Surg. 1989;5(6):400–8.

    CAS  Google Scholar 

  24. Wilson SE, Lin DT, Klyce SD. Corneal topography of keratoconus. Cornea. 1991;10(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  25. Auffarth GU, Wang L, Volcker HE. Keratoconus evaluation using the Orbscan Topography System. J Cataract Refract Surg. 2000;26(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  26. Prisant O, Legeais JM, Renard G. Superior keratoconus. Cornea. 1997;16(6):693–4.

    Article  CAS  PubMed  Google Scholar 

  27. Schlegel Z, Hoang-Xuan T, Gatinel D. Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. J Cataract Refract Surg. 2008;34(5):789–95. doi:10.1016/j.jcrs.2007.12.036.

    Article  PubMed  Google Scholar 

  28. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.

    CAS  PubMed  Google Scholar 

  29. Tomidokoro A, Oshika T, Amano S, Higaki S, Maeda N, Miyata K. Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology. 2000;107(7):1328–32.

    Article  CAS  PubMed  Google Scholar 

  30. Wolffsohn JS, Safeen S, Shah S, Laiquzzaman M. Changes of corneal biomechanics with keratoconus. Cornea. 2012;31(8):849–54. doi:10.1097/ICO.0b013e318243e42d.

    Article  PubMed  Google Scholar 

  31. Savini G, Carbonelli M, Barboni P, Hoffer KJ. Repeatability of automatic measurements performed by a dual Scheimpflug analyzer in unoperated and post-refractive surgery eyes. J Cataract Refract Surg. 2011;37(2):302–9. doi:10.1016/j.jcrs.2010.07.039.

    Article  PubMed  Google Scholar 

  32. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg. 2011;37(10):1809–16. doi:10.1016/j.jcrs.2011.04.033.

    Article  PubMed  Google Scholar 

  33. Maldonado MJ, Nieto JC, Pinero DP. Advances in technologies for laser-assisted in situ keratomileusis (LASIK) surgery. Exp Rev Med Dev. 2008;5(2):209–29. doi:10.1586/17434440.5.2.209.

    Article  Google Scholar 

  34. Pinero DP, Nieto JC, Lopez-Miguel A. Characterization of corneal structure in keratoconus. J Cataract Refract Surg. 2012;38(12):2167–83. doi:10.1016/j.jcrs.2012.10.022.

    Article  PubMed  Google Scholar 

  35. Pinero DP. Technologies for anatomical and geometric characterization of the corneal structure and anterior segment: a review. Semin Ophthalmol. 2013;30(3):161–70. doi:10.3109/08820538.2013.835844.

    Article  PubMed  Google Scholar 

  36. Ambrosio Jr R, Valbon BF, Faria-Correia F, Ramos I, Luz A. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24(4):310–20. doi:10.1097/ICU.0b013e3283622a94.

    Article  PubMed  Google Scholar 

  37. Ramos-Lopez D, Martinez-Finkelshtein A, Castro-Luna GM, Piñero D, Alio JL. Placido-based indices of corneal irregularity. Optom Vis. 2011;88(10):1220–31. doi:10.1097/OPX.0b013e3182279ff8.

    Article  Google Scholar 

  38. Klyce SD, Karon MD, Smolek MK. Advantages and disadvantages of the Zernike expansion for representing wave aberration of the normal and aberrated eye. J Refract Surg. 2004;20(5):S537–41.

    PubMed  Google Scholar 

  39. Schneider M, Iskander DR, Collins MJ. Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression. IEEE Trans Biomed Eng. 2009;56(2):493–9. doi:10.1109/tbme.2008.2006019.

    Article  PubMed  Google Scholar 

  40. Espinosa J, Mas D, Perez J, Illueca C. Optical surface reconstruction technique through combination of zonal and modal fitting. J Biomed Opt. 2010;15(2):026022. doi:10.1117/1.3394260.

    Article  PubMed  Google Scholar 

  41. Tyson RK. Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients. Opt Lett. 1982;7(6):262–4.

    Article  CAS  PubMed  Google Scholar 

  42. Conforti G. Zernike aberration coefficients from Seidel and higher-order power-series coefficients. Opt Lett. 1983;8(7):407–8.

    Article  CAS  PubMed  Google Scholar 

  43. Smolek MK, Klyce SD. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces. J Cataract Refract Surg. 2005;31(12):2350–5. doi:10.1016/j.jcrs.2005.05.025.

    Article  PubMed  Google Scholar 

  44. Carvalho LA. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Invest Ophthalmol Vis Sci. 2005;46(6):1915–26. doi:10.1167/iovs.04-1222.

    Article  PubMed  Google Scholar 

  45. Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction. Appl Opt. 2006;45(27):6954–64.

    Article  CAS  PubMed  Google Scholar 

  46. Schwiegerling J, Greivenkamp JE. Keratoconus detection based on videokeratoscopic height data. Optom Vis Sci. 1996;73(12):721–8.

    Article  CAS  PubMed  Google Scholar 

  47. Iskander DR, Alkhaldi W, Zoubir AM, editors. On the computer intensive methods in model selection. In: ICASSP, IEEE International conference on acoustics, speech and signal processing—proceedings; 2008.

    Google Scholar 

  48. Alkhaldi W, Iskander DR, Zoubir AM, Collins MJ. Enhancing the standard operating range of a Placido disk videokeratoscope for corneal surface estimation. IEEE Trans Biomed Eng. 2009;56(3):800–9. doi:10.1109/tbme.2008.2005997.

    Article  PubMed  Google Scholar 

  49. Dai GM. Comparison of wavefront reconstructions with Zernike polynomials and Fourier transforms. J Refract Surg. 2006;22(9):943–8.

    PubMed  Google Scholar 

  50. Wang L, Chernyak D, Yeh D, Koch DD. Fitting behaviors of Fourier transform and Zernike polynomials. J Cataract Refract Surg. 2007;33(6):999–1004. doi:10.1016/j.jcrs.2007.03.017.

    Article  PubMed  Google Scholar 

  51. Yoon G, Pantanelli S, MacRae S. Comparison of Zernike and Fourier wavefront reconstruction algorithms in representing corneal aberration of normal and abnormal eyes. J Refract Surg. 2008;24(6):582–90.

    PubMed  Google Scholar 

  52. Martinez-Finkelshtein A, Delgado AM, Castro GM, Zarzo A, Alio JL. Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data. Invest Ophthalmol Vis Sci. 2009;50(12):5639–45. doi:10.1167/iovs.08-3351.

    Article  PubMed  Google Scholar 

  53. Martinez-Finkelshtein A, Lopez DR, Castro GM, Alio JL. Adaptive cornea modeling from keratometric data. Invest Ophthalmol Vis Sci. 2011;52(8):4963–70. doi:10.1167/iovs.10-6774.

    Article  PubMed  Google Scholar 

  54. Okrasiński W, Płociniczak Ł. A nonlinear mathematical model of the corneal shape. Nonlinear Anal Real World Appl. 2012;13(3):1498–505. doi:10.1016/j.nonrwa.2011.11.014.

    Article  Google Scholar 

  55. Płociniczak L, Okrasiński W, Nieto JJ, Domínguez O. On a nonlinear boundary value problem modeling corneal shape. J Math Anal Appl. 2014;414(1):461–71. doi:10.1016/j.jmaa.2014.01.010.

    Article  Google Scholar 

  56. Zhu Z, Janunts E, Eppig T, Sauer T, Langenbucher A. Iteratively re-weighted bi-cubic spline representation of corneal topography and its comparison to the standard methods. Z Med Phys. 2010;20(4):287–98. doi:10.1016/j.zemedi.2010.07.002.

    Article  PubMed  Google Scholar 

  57. Wahba G. Spline models for observational data. Philadelphia: SIAM; 1990.

    Book  Google Scholar 

  58. Liu X, Gao Y. B-spline based wavefront reconstruction for lateral shearing interferometric measurement of engineering surfaces. Key Engineering Materials2003. p. 169–74.

    Google Scholar 

  59. Piegl L. On NURBS: a survey. IEEE Comput Graph Appl. 1991;11(1):55–71. doi:10.1109/38.67702.

    Article  Google Scholar 

  60. Piegl L, Tiller W. The NURBS book. Washington: U.S. Government Printing Office; 1997.

    Book  Google Scholar 

  61. Turuwhenua J, Henderson J. A novel low-order method for recovery of the corneal shape. Optom Vis Sci. 2004;81(11):863–71. doi:10.1097/01.OPX.0000145023.74460.EE.

    Article  PubMed  Google Scholar 

  62. Turuwhenua J. An improved low order method for corneal reconstruction. Optom Vis Sci. 2008;85(3):E211–8. doi:10.1097/OPX.0b013e318164ee9b.

    Article  Google Scholar 

  63. Zhu Z, Janunts E, Eppig T, Sauer T, Langenbucher A. Tomography-based customized IOL calculation model. Curr Eye Res. 2011;36(6):579–89. doi:10.3109/02713683.2011.566978.

    Article  PubMed  Google Scholar 

  64. Xing Q, Wei Q. Human eyeball model reconstruction and quantitative analysis. Conference proceedings: In: Annual international conference of the IEEE engineering in medicine and biology society, 26–30 Aug. 2014. p. 2460–3. doi:10.1109/embc.2014.6944120

  65. Rosenthal P, Cotter JM. Clinical performance of a spline-based apical vaulting keratoconus corneal contact lens design. CLAO J. 1995;21(1):42–6.

    CAS  PubMed  Google Scholar 

  66. Mahadevan R, Fathima A, Rajan R, Arumugam AO. An ocular surface prosthesis for keratoglobus and Terrien’s marginal degeneration. Optom Vis Sci. 2014;91(4 Suppl 1):S34–9. doi:10.1097/opx.0000000000000200.

    Article  PubMed  Google Scholar 

  67. Roy AS, Dupps Jr WJ. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci. 2011;52(12):9174–87. doi:10.1167/iovs.11-7395.

    Article  PubMed  Google Scholar 

  68. Bao F, Chen H, Yu Y, Yu J, Zhou S, Wang J, et al. Evaluation of the shape symmetry of bilateral normal corneas in a Chinese population. PLoS One. 2013;8(8), e73412. doi:10.1371/journal.pone.0073412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Simonini I, Pandolfi A. Customized finite element modelling of the human cornea. PLoS One. 2015;10(6), e0130426. doi:10.1371/journal.pone.0130426.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun W, Darling A, Starly B, Nam J. Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem. 2004;39(1):29–47.

    Article  CAS  PubMed  Google Scholar 

  71. Lohfeld S, Barron V, McHugh PE. Biomodels of bone: a review. Ann Biomed Eng. 2005;33(10):1295–311. doi:10.1007/s10439-005-5873-x.

    Article  CAS  PubMed  Google Scholar 

  72. Farin G, Hoschek J, Kim MS. Handbook of computer aided geometric design. North Holland: Elsevier; 2002.

    Google Scholar 

  73. Pottmann H, Leopoldseder S, Hofer M, Steiner T, Wang W. Industrial geometry: recent advances and applications in CAD. Comput Aided Des Appl. 2005;37(7):751–66. doi:10.1016/j.cad.2004.08.013.

    Article  Google Scholar 

  74. Cui J, Tang M, Liu H. Dynamic shape representation for product modeling in conceptual design. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J Comput Aided Des Comput Graph. 2014;26(10):1879–85.

    Google Scholar 

  75. Lee T, Choi JB, Schafer BW, Segars WP, Eckstein F, Kuhn V, et al. Assessing the susceptibility to local buckling at the femoral neck cortex to age-related bone loss. Ann Biomed Eng. 2009;37(9):1910–20. doi:10.1007/s10439-009-9751-9.

    Article  PubMed  Google Scholar 

  76. Almeida HA, Bártolo PJ, editors. Computational technologies in tissue engineering. WIT transactions on biomedicine and health. Southampton: WIT Press; 2013.

    Google Scholar 

  77. Wu Z, Fu J, Wang Z, Li X, Li J, Pei Y, et al. Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology. Int Orthopaed. 2015;39(6):1151–8. doi:10.1007/s00264-015-2719-5.

    Article  Google Scholar 

  78. Brand M, Avrahami I, Einav S, Ryvkin M. Numerical models of net-structure stents inserted into arteries. Comput Biol Med. 2014;52:102–10. doi:10.1016/j.compbiomed.2014.06.015.

    Article  PubMed  Google Scholar 

  79. Chiang CI, Shyh-Yuan L, Ming-Chang W, Sun CW, Jiang CP. Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Comput Methods Biomech Biomed Eng. 2014;17(5):516–26. doi:10.1080/10255842.2012.697556.

    Article  Google Scholar 

  80. Schmidt T, Pandya D, Balzani D. Influence of isotropic and anisotropic material models on the mechanical response in arterial walls as a result of supra-physiological loadings. Mech Res Commun. 2015;64:29–37. doi:10.1016/j.mechrescom.2014.12.008.

    Article  Google Scholar 

  81. Rocha M, Pereira JP, De Castro AV, editors. 3D modeling mechanisms for educational resources in medical and health area. In: Proceedings of the 6th Iberian conference on information systems and technologies, CISTI 2011; 2011.

    Google Scholar 

  82. Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61. doi:10.1136/bjophthalmol-2013-304446.

    Article  PubMed  Google Scholar 

  83. Donnelly III W. The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter. J Refrac Surg. 2008;24(9):976–83.

    Google Scholar 

  84. Talu S, Stach S, Sueiras V, Ziebarth NM. Fractal analysis of AFM images of the surface of Bowman’s membrane of the human cornea. Ann Biomed Eng. 2015;43(4):906–16. doi:10.1007/s10439-014-1140-3.

    Article  PubMed  Google Scholar 

  85. Giovanzana S. A virtual environment for modeling and analysis of human eye. Padua: Universidad de Padua; 2011.

    Google Scholar 

  86. Genest R. Effect of intraocular pressure on chick eye geometry, finite element modeling, and myopia. Ontario: Universidad de Waterloo; 2010.

    Google Scholar 

  87. Wong A, Genest R, Chandrashekar N, Choh V, Irving EL. Automatic system for 3D reconstruction of the chick eye based on digital photographs. Comput Methods Biomech Biomed Eng. 2012;15(2):141–9. doi:10.1080/10255842.2010.518566.

    Article  Google Scholar 

  88. Ding S, Ye Y, Tu J, Subic A. Region-based geometric modelling of human airways and arterial vessels. Comput Med Imaging Graph. 2010;34(2):114–21. doi:10.1016/j.compmedimag.2009.07.005.

    Article  PubMed  Google Scholar 

  89. Duan CY, Lü HB, Hu JZ. In vivo study on three-dimensional structure of lumbar facet joints based on computer-assisted medical image processing method. Yiyong Shengwu Lixue/J Med Biomech. 2012;27(2):159–65.

    Google Scholar 

  90. Cheng RKC. Inside Rhinoceros 5. Stamford: Cengage Learning; 2014.

    Google Scholar 

Download references

Compliance with Ethical Requirements

Conflict of Interest: F. Cavas-Martínez, E. De la Cruz Sánchez, J. Nieto Martínez, F.J. Fernández Cañavate and D.G. Fernández-Pacheco declare that they have no conflict of interest.

Informed Consent: All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

No animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cavas-Martínez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavas-Martínez, F., De la Cruz Sánchez, E., Nieto Martínez, J., Fernández Cañavate, F.J., Fernández-Pacheco, D.G. (2017). Geometrical Analysis of Corneal Topography. In: Alió, J. (eds) Keratoconus. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-43881-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43881-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43879-5

  • Online ISBN: 978-3-319-43881-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics