Skip to main content

XAFS for Ultra Dilute Systems

  • Chapter
  • First Online:
  • 2621 Accesses

Abstract

The EXAFS is usually measured in a transmission mode. For dilute system signal is too weak and hindered by the large background. In that case one may use a fluorescence mode. The sensitivity of fluorescence mode depends on the S/B ratio. In the low concentration system, energy-resolved detector can be used. In the ultra dilute crystal monochromator can effectively distinguish the fluorescence and the background. We can now have a signal of the dilute system with less than 1 ppb.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lytle FW, Greegor RB, Sandstrom DR, Marques EC, Wong J, Spiro CL, Huffman GP, Huggins FE (1984) Measurement of soft X-ray absorption spectra with a fluorescent ion chamber detector. Nucl Instrum Methods Phys Res A 226(2–3):542–548. doi:10.1016/0168-9002(84)90077-9

    Article  CAS  Google Scholar 

  2. Wong J (1984) Method for fabricating large-area X-ray filters. Nucl Instrum Methods Phys Res 224(1–2):303–307. doi:10.1016/0167-5087(84)90479-4

    Article  CAS  Google Scholar 

  3. Nomura M (1998) Dead-time correction of a multi-element SSD for fluorescent XAFS. J Synchrotron Radiat 5(3):851–853. doi:10.1107/S090904959800003X

    Article  CAS  Google Scholar 

  4. Kohra K, Kikuta S (1979) X-ray diffraction technique. University of Tokyo Press, Tokyo

    Google Scholar 

  5. Kikuta S (2011) X-ray scattering and synchrotron radiation. University of Tokyo Press, Tokyo

    Google Scholar 

  6. Cramer S, Tench O, Yocum M, George G (1988) A 13-element Ge detector for fluorescence EXAFS. Nucl Instrum Methods Phys Res A 266(1):586–591

    Article  Google Scholar 

  7. Oyanagi H, Fonne C, Gutknecht D, Dressler P, Henck R, Lampert MO, Ogawa S, Kasai K, Mohamed SB (2003) Ge pixel array detector for high throughput X-ray spectroscopy. Nucl Instrum Methods Phys Res A 513(1–2):340–344. doi:10.1016/j.nima.2003.08.059

    Article  CAS  Google Scholar 

  8. Gauthier C, Goulon J, Moguiline E, Rogalev A, Lechner P, Strüder L, Fiorini C, Longoni A, Sampietro M, Besch H, Pfitzner R, Schenk H, Tafelmeier U, Walenta A, Misiakos K, Kavadias S, Loukas D (1996) A high resolution, 6 channels, silicon drift detector array with integrated JFET’s designed for XAFS spectroscopy: first X-ray fluorescence excitation spectra recorded at the ESRF. Nucl Instrum Methods Phys Res A 382(3):524–532. doi:10.1016/S0168-9002(96)00814-5

    Article  CAS  Google Scholar 

  9. Chun WJ, Asakura K, Iwasawa Y (1996) Application of a Cdte solid-state detector to polarization-dependent total-reflection fluorescence Xafs measurements. J Synchrotron Radiat 3(Part 4):160–162

    Article  CAS  Google Scholar 

  10. Friedrich S (2006) Cryogenic X-ray detectors for synchrotron science. J Synchrotron Radiat 13(2):159–171. doi:10.1107/S090904950504197X

    Article  Google Scholar 

  11. Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S (2012) X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC. Sci Rep 2. doi:http://www.nature.com/srep/2012/121114/srep00831/abs/srep00831.html#supplementary-information

  12. Sa J (ed) (2014) High resolution XAS/XES analyzing electronic structures of catalysts. CRC Press, Boka Raton, FL

    Google Scholar 

  13. Szlachetko J, Cotte M, Morse J, Salomé M, Jagodzinski P, Dousse JC, Hoszowska J, Kayser Y, Susini J (2010) Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF). J Synchrotron Radiat 17(3):400–408. doi:10.1107/s0909049510010691

    Article  CAS  Google Scholar 

  14. Sokaras D, Nordlund D, Weng T-C, Mori RA, Velikov P, Wenger D, Garachtchenko A, George M, Borzenets V, Johnson B, Qian Q, Rabedeau T, Bergmann U (2012) A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource. Rev Sci Instrum 83(4):043112. doi:10.1063/1.4704458

    Article  CAS  Google Scholar 

  15. Uehara H, Uemura Y, Ogawa T, Kono K, Ueno R, Niwa Y, Nitani H, Abe H, Takakusagi S, Nomura M, Iwasawa Y, Asakura K (2014) In situ back-side illumination fluorescence XAFS (BI-FXAFS) studies on platinum nanoparticles deposited on a HOPG surface as a model fuel cell: a new approach to the Pt-HOPG electrode/electrolyte interface. Phys Chem Chem Phys 16(27):13748–13754. doi:10.1039/c4cp00265b

    Article  CAS  Google Scholar 

  16. Hastings JB, Eisenberger P, Lengeler B, Perlman ML (1979) Local-structure determination at high dilution: internal oxidation of 75-ppm Fe in Cu. Phys Rev Lett 43:1807–1810

    Article  CAS  Google Scholar 

  17. Sakayanagi Y (1982) Bragg optics of a logarithmic spiral surface. Jpn J Appl Phys 21:L225–L226

    Article  Google Scholar 

  18. Adams BW, Attenkofer K (2008) An active-optic X-ray fluorescence analyzer with high energy resolution, large solid angle coverage, and a large tuning range. Rev Sci Instrum 79(2):23102. doi:10.1063/1.2823527

    Article  Google Scholar 

  19. Zhong Z, Chapman LD, Bunker BA, Bunker GB, Fischetti R, Segre CU (1999) A bent Laue analyzer for fluorescence EXAFS detection. J Synchrotron Radiat 6(3):212–214. doi:10.1107/s0909049599002022

    Article  CAS  Google Scholar 

  20. Kropf A, Finch RJ, Fortner JA, Aase S, Karanfil C, Segre CU, Terry J, Bunker G, Chapman LD (2003) Bent silicon crystal in the Laue geometry to resolve X-ray fluorescence for X-ray absorption spectroscopy. Rev Sci Instrum 74:4696

    Article  CAS  Google Scholar 

  21. Kujala NG, Karanfil C, Barrea RA (2011) High resolution short focal distance Bent Crystal Laue Analyzer for copper K edge x-ray absorption spectroscopy. Rev Sci Instrum 82(6):063106. doi:10.1063/1.3595675

    Article  CAS  Google Scholar 

  22. Takahashi Y, Uruga T, Tanida H, Terada Y, Nakai S, Shimizu H (2006) Application of X-ray absorption near-edge structure (XANES) using bent crystal analyzer to speciation of trace Os in iron meteorites. Anal Chim Acta 558(1):332–336

    Article  CAS  Google Scholar 

  23. Yamamoto Y, Takahashi Y, Kanai Y, Watanabe Y, Uruga T, Tanida H, Terada Y, Shimizu H (2008) High-sensitive measurement of uranium LIII-edge X-ray absorption near-edge structure (XANES) for the determination of the oxidation states of uranium in crustal materials. Appl Geochem 23(8):2452–2461. doi:10.1016/j.apgeochem.2008.02.005

    Article  CAS  Google Scholar 

  24. Kashiwabara T, Takahashi Y, Uruga T, Tanida H, Terada Y, Niwa Y, Nomura M (2010) Speciation of tungsten in natural ferromanganese oxides using wavelength dispersive XAFS. Chem Lett 39(8):870–871. doi:10.1246/cl.2010.870

    Article  CAS  Google Scholar 

  25. Kashiwabara T, Takahashi Y, Marcus MA, Uruga T, Tanida H, Terada Y, Usui A (2013) Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean. Geochim Cosmochim Acta 106:364–378. doi:10.1016/j.gca.2012.12.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Asakura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asakura, K. (2017). XAFS for Ultra Dilute Systems. In: Iwasawa, Y., Asakura, K., Tada, M. (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-43866-5_14

Download citation

Publish with us

Policies and ethics