Skip to main content

X-Ray Absorption with Transmission X-Ray Microscopes

  • Chapter
  • First Online:
XAFS Techniques for Catalysts, Nanomaterials, and Surfaces
  • 2621 Accesses

Abstract

In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM experiments pose the same restrictions on in situ experiments as bulk XAS experiments, allowing experiments with capillaries to study catalysts under working conditions. In the soft X-ray range, dedicated transmission nanoreactors are needed. Considering catalysts the main result the in situ TXM experiments are the determination of nanometer range variations of catalysts under working conditions. An important property of X-rays is their short wavelength below 1 nm. This allows direct imaging of catalysts in scanning mode or full field mode. In contrast, visible light with an energy of 1 eV has a diffraction limited resolution of approximately 500 nm and VUV light with an energy of 10 eV has a diffraction limit of ~50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehbein S, Heim S, Guttmann P, Werner S, Schneider G (2009) Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Phys Rev Lett 103:110801

    Article  CAS  Google Scholar 

  2. de Groot FMF, de Smit E, van Schooneveld MM, Aramburo LR, Weckhuysen BM (2010) In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. ChemPhysChem 11:951

    Article  Google Scholar 

  3. Ade H, Smith AP, Zhang H, Zhuang GR, Kirz J, Rightor E, Hitchcock A (1997) X-ray spectromicroscopy of polymers and tribological surfaces at beamline X1A at the NSLS. J Electron Spectrosc Relat Phenom 84:53

    Article  CAS  Google Scholar 

  4. Wiesemann U, Thieme J, Guttmann P, Früke R, Rehbein S, Niemann B, Rudolph D, Schmahl G (2003) First results of the new scanning transmission X-ray microscope at BESSY-II. J Phys IV 104:95

    Google Scholar 

  5. Raabe J, Tzvetkov G, Flechsig U, Boge M, Jaggi A, Sarafimov B, Vernooij MGC, Huthwelker T, Ade H, Kilcoyne D, Tyliszczak T, Fink RH, Quitmann C (2008) PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev Sci Instrum 79:113704

    Article  CAS  Google Scholar 

  6. Kaznatcheev KV, Karunakaran C, Lanke UD, Urquhart SG, Obst M, Hitchcock AP (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Inst Meth A 582:96–99

    Article  CAS  Google Scholar 

  7. Warwick T, Ade H, Cerasari S, Denlinger J, Franck K, Garcia A, Hayakawa S, Hitchcock A, Kikuma J, Klingler S, Kortright J, Morisson G, Moronne M, Rightor E, Rotenberg E, Seal S, Shin HJ, Steele WF, Tonner BP (1998) Development of scanning X-ray microscopes for materials science spectromicroscopy at the Advanced Light Source. J Synchrotron Radiat 5:1090–1092

    Article  CAS  Google Scholar 

  8. Warwick T, Ade H, Kilcoyne D, Kritscher M, Tylisczcak T, Fakra S, Hitchcock A, Hitchcock P, Padmore H (2002) A new bend-magnet beamline for scanning transmission X-ray microscopy at the Advanced Light Source. J Synchrotron Radiat 9:254–257

    Article  CAS  Google Scholar 

  9. Chen JG (1997) NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf Sci Rep 30:1–152

    Google Scholar 

  10. Ade H, Zhang X, Cameron S, Costello C, Kirz J, Williams S (1992) Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258:972–975

    Article  CAS  Google Scholar 

  11. de Groot F, Kotani A (2008) Core level spectroscopy of solids. Taylor & Francis, New York, p 3

    Book  Google Scholar 

  12. Cramer SP, de Groot FMF, Ma Y, Chen CT, Sette F, Kipke CA, Eichhorn DM, Chan MK, Armstrong WH, Libby E, Christou G, Brooker S, McKee V, Mullins OC, Fuggle JC (1991) Ligand field strengths and oxidation states from manganese L edge spectroscopy. J Am Chem Soc 113:7937–7940

    Article  CAS  Google Scholar 

  13. de Groot F (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249:31–63

    Article  Google Scholar 

  14. Batson PE, Dellby N, Krivanek OL (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418:617–620

    Article  CAS  Google Scholar 

  15. Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8:263–270

    Article  CAS  Google Scholar 

  16. Muller DA, Kourkoutis LF, Murfitt M, Song JH, Hwang HY, Silcox J, Delby N, Krivanek OL (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073–1076

    Article  CAS  Google Scholar 

  17. Chao W, Kim J, Rekawa S, Fischer P, Anderson EH (2009) Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy. Opt Express 17:17669–17677

    Article  CAS  Google Scholar 

  18. de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK, Tyliszczak T, Kooyman PJ, Zandbergen HW, Morin C, Weckhuysen BM, de Groot FMF (2008) Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456:222

    Article  Google Scholar 

  19. de Smit E, Swart I, Creemer JF, Karunakaran C, Bertwistle D, Zandbergen HW, de Groot FMF, Weckhuysen BM (2009) Nanoscale chemical imaging of the reduction behavior of a single catalyst particle. Angew Chem Int Ed 48:3632–3636

    Article  Google Scholar 

  20. Creemer JF, Helveg S, Hoveling GH, Ullmann S, Molenbroek AM, Sarro PM, Zandbergen HW (2008) Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108:993–998

    Article  CAS  Google Scholar 

  21. Thomas JM, Hernandez-Garrido JC (2009) Probing solid catalysts under operating conditions: electrons or X-rays? Angew Chem Int Ed 48:3904–3907

    Article  CAS  Google Scholar 

  22. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  Google Scholar 

  23. Bosman M, Keast VJ, Garcia-Munoz JL, D'Alfonso AJ, Findlay SD, Allen LJ (2007) Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99:086102

    Article  CAS  Google Scholar 

  24. Rightor EG, Hitchcock AP, Ade H, Leapman RD, Urquhart SG, Smith AP, Mitchell G, Fischer D, Shin HJ, Warwick T (1997) Spectromicroscopy of poly(ethylene terephthalate). J Phys Chem B 101:1950–1960

    Article  CAS  Google Scholar 

  25. Howells MR, Hitchcock AP, Jacobsen CJ (2009) Introduction: special issue on radiation damage. J Electron Spectrosc Relat Phenom 170:1–3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Groot, F. (2017). X-Ray Absorption with Transmission X-Ray Microscopes. In: Iwasawa, Y., Asakura, K., Tada, M. (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-43866-5_12

Download citation

Publish with us

Policies and ethics