Advertisement

The Selten–Szidarovszky Technique: The Transformation Part

  • Pierre von MoucheEmail author
Chapter
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)

Abstract

A technique due to Selten and Szidarovszky for the analysis of Nash equilibria of games with an aggregative structure is reconsidered. Among other things it is shown that the transformation part of this technique can be extended to abstract games with co-strategy mappings and allows for a purely algebraic setting.

Keywords

Aggregative games Fixed points Nash equilibria Selten-Szidarovszky technique 

References

  1. 1.
    Acemoglu, D., Jensen, M.: Aggregate comparative statics. Games Econ. Behav. 81, 27–49 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cornes, R., Hartley, R.: Joint production games and share functions. Discussion Paper 23, University of Nottingham (2000)Google Scholar
  3. 3.
    Cornes, R., Sato, T.: Existence and uniqueness of Nash equilibrium in aggregative games: an expository treatment. In: von Mouche, P.H.M., Quartieri, F. (eds.) Equilibrium Theory for Cournot Oligopolies and Related Games: Essays in Honour of Koji Okuguchi. Springer, Cham (2016)Google Scholar
  4. 4.
    Deneckere, R., Kovenock, D.: Direct demand-based Cournot-existence and uniqueness conditions. Tech. rep. (1999)Google Scholar
  5. 5.
    Hirai, S., Szidarovszky, F.: Existence and uniqueness of equilibrium in asymmetric contests with endogenous prizes. Int. Game Theory Rev. 15 (1) (2013)Google Scholar
  6. 6.
    Kukushkin, N.S.: A fixed point theorem for decreasing mappings. Econ. Lett. 46, 23–26 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kukushkin, N.S.: Novshek’s trick as a polynomial algorithm. Discrete Appl. Math. 162, 28–31 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Martimort, D., Stole, L.: Representing equilibrium aggregates in aggregate games with applications to common agency. Games Econ. Behav. 76, 753–772 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    McManus, M.: Numbers and size in Cournot oligopoly. Yorks. Bull. 14, 14–22 (1962)CrossRefGoogle Scholar
  10. 10.
    Novshek, W.: On the existence of Cournot equilibrium. Rev. Econ. Stud. 52 (1), 85–98 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Selten, R.: Preispolitik der Mehrproduktunternehmung in der Statischen Theorie. Springer, Berlin (1970)CrossRefzbMATHGoogle Scholar
  12. 12.
    Szidarovszky, F.: On the Oligopoly game. Technical report, Karl Marx University of Economics, Budapest (1970)zbMATHGoogle Scholar
  13. 13.
    Szidarovszky, F., Okuguchi, K.: On the existence and uniqueness of pure Nash equilibrium in rent-seeking games. Games Econ. Behav. 18, 135–140 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Szidarovszky, F., Yakowitz, S.: A new proof of the existence and uniqueness of the Cournot equilibrium. Int. Econ. Rev. 18, 787–789 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19, 305–321 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    von Mouche, P.H.M., Yamazaki, T.: Sufficient and necessary conditions for equilibrium uniqueness in aggregative games. J. Nonlinear Convex Anal. 16 (2), 353–364 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    von Mouche, P.H.M., Quartieri, F., Szidarovszky, F.: On a fixed point problem transformation method. In: Proceedings of the 10th IC-FPTA, Cluj-Napoca, Romania, pp. 179–190 (2013)Google Scholar
  18. 18.
    Wolfstetter, E.: Topics in Microeconomics: Industrial Organization, Auctions, and Incentives. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Wageningen Universiteit en ResearchcentrumWageningenThe Netherlands

Personalised recommendations