Skip to main content

The Shapley Value as a Sustainable Cooperative Solution in Differential Games of Three Players

  • Chapter
  • First Online:

Part of the book series: Static & Dynamic Game Theory: Foundations & Applications ((SDGTFA))

Abstract

The contribution of the paper is twofold: first, it has been shown that the Yeung’s conditions can be used to construct a strongly time-consistent core. In this core there is a supporting imputation which has the property that a single deviation from this imputation in favor of any other imputation from the core still leads to the payment from the core. The obtained results were formulated for the Shapley value taken as the supporting imputation. Second, a particular class of differential games was considered. For this class of games the δ-characteristic function turns out to be superadditive and the Yeung’s conditions are satisfied without any additional restrictions on the parameters of the model. All results are presented in the analytic form.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bondareva, O.N.: Some applications of linear programming methods to the theory of cooperative games. Problemy kibernetiki 10, 119–139 (1963) (in Russian)

    MathSciNet  MATH  Google Scholar 

  2. Breton, M., Zaccour, G., Zahaf, M.: A differential game of joint implementation of environmental projects. Automatica 41 (10), 1737–1749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dockner, E.J., Jorgensen, S., van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Gromova, E., Petrosyan, L.: On a approach to the construction of characteristic function for cooperative differential games. Mat. Teor. Igr Pril. 7 (4), 19–39 (2015)

    MathSciNet  Google Scholar 

  5. Gromova, E., Petrosyan, L.: Strongly time-consistent cooperative solution for a differential game of pollution control. In: Petrosjan, L., Mazalov, V.V. (eds.) Theory and Applications. Volume 17: Game-Theoretic Models in Mathematical Ecology, pp. 75–92. Nova Science Publishers (2015)

    Google Scholar 

  6. Hart, S.: Shapley value. In: Eatwell, J., Milgate, M., Newman, P. (eds.) The New Palgrave: A Dictionary of Economics, vol. 4, pp. 210–216. Macmillan, London (1987)

    Google Scholar 

  7. Haurie, A., et al.: Games and Dynamic Games. World Scientific Books, Singapore (2012)

    Book  MATH  Google Scholar 

  8. Mas-Colell, A., Whinston, M., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  9. Mazalov, V., Rettieva, A.: Fish wars with many players. Int. Game Theory Rev. 12 (4), 385–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  11. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Pechersky, S., Yanovskaya, E.: Cooperative Games: Solutions and Axioms. St. Petersburg (2004)

    Google Scholar 

  13. Petrosyan, L.A.: Time-consistency of solutions in multi-player differential games. Vestnik Leningrad State University 4, 46–52 (1977) (in Russian)

    Google Scholar 

  14. Petrosyan, L.A.: On new strongly time-consistent optimality principles in cooperative differential games. In: Proceedings of the Steklov Institute of Mathematics. Optimal Control and Differential Equations, vol. 211, pp. 370–376 (1995)

    Google Scholar 

  15. Petrosyan, L.A.: Characteristic functions in cooperative differential games. Vestnik SPbSU, Ser. 1: Math. Mech. Astron. 1, 48–52 (1995) (in Russian)

    Google Scholar 

  16. Petrosyan, L.: Strongly time-consistent solutions in dynamic cooperative games. Research report. http://hdl.handle.net/11701/1440 (in Russian)

  17. Petrosyan, L.A., Danilov, N.N.: Cooperative Differential Games and Applications, 273 pp. Tomsk University, Tomsk (1985) (in Russian)

    MATH  Google Scholar 

  18. Petrosyan, L., Zaccour, G.: Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control 27, 381–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reddy, P.V., Zaccour, G.: A friendly computable characteristic function. GERAD Research Report G-2014–78. Mathematical Social Sciences 82, April 2016. doi: 10.1016/j.mathsocsci.2016.03.008 (2016)

  20. Sedakov, A.: The strong time-consistent core. Mat. Teor. Igr Pril. 7 (2), 69–84 (2015)

    MathSciNet  Google Scholar 

  21. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II. Annals of Mathematical Studies, vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  22. Shapley, L.S.: Cores of convex games. Int. J. Game Theory (1971)

    MATH  Google Scholar 

  23. Smirnova, E.: Stable cooperation in one linear-quadratic differential games. In: Proceedings of the Student Conference, St. Petersburg State University, pp. 666–672 (2013)

    Google Scholar 

  24. Vorobyov, N.N.: Game Theory for Economists–Cyberneticians. Nauka, Moscow (1985)

    Google Scholar 

  25. Yeung, D.W.K.: An irrational-behavior-proof condition in cooperative differential games. Int. Game Theory Rev. 8 (4), 739–744 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yeung, D.W.K., Petrosjan, L.A.: Cooperative Stochastic Differential Games. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the grants 9.38.245.2014, 9.41.723.2015, and 9.42.1043.2016 from St. Petersburg State University. A part of this research was conducted while visiting prof. G. Zaccour at GERAD, Montreal, Canada, February 2015.

The author is grateful to the anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Gromova .

Editor information

Editors and Affiliations

Appendices

Appendix 1

The expression for the Shapley value calculated for a game of pollution control.

$$\displaystyle{\begin{array}{l} Sh_{1}(x(t),T - t) = \\ = \frac{\left (T-t\right )} {36} (18b_{1}^{2} - 36d_{ 1}x(t) + 12T^{2}d_{ 1}^{2} + 3T^{2}d_{ 2}^{2} + 3T^{2}d_{ 3}^{2} + 12d_{ 1}^{2}t^{2}+ \\ + 3d_{2}^{2}t^{2} + 3d_{3}^{2}t^{2} - 18Tb_{1}d_{1} - 18Tb_{2}d_{1} - 18Tb_{3}d_{1} + 18b_{1}d_{1}t+ \\ + 18b_{2}d_{1}t + 18b_{3}d_{1}t + 16T^{2}d_{1}d_{2} + 16T^{2}d_{1}d_{3} + 4T^{2}d_{2}d_{3} - 24Td_{1}^{2}t- \\ - 6Td_{2}^{2}t - 6Td_{3}^{2}t + 16d_{1}d_{2}t^{2} + 16d_{1}d_{3}t^{2} + 4d_{2}d_{3}t^{2} - 32Td_{1}d_{2}t- \\ - 32Td_{1}d_{3}t - 8Td_{2}d_{3}t); \\ Sh_{2}(x(t),T - t) = \\ = \frac{\left (T-t\right )} {36} (18b_{2}^{2} - 36d_{ 2}x(t) + 3T^{2}d_{ 1}^{2} + 12T^{2}d_{ 2}^{2} + 3T^{2}d_{ 3}^{2} + 3d_{ 1}^{2}t^{2}+ \\ + 12d_{2}^{2}t^{2} + 3d_{3}^{2}t^{2} - 18Tb_{1}d_{2} - 18Tb_{2}d_{2} - 18Tb_{3}d_{2} + 18b_{1}d_{2}t+ \\ + 18b_{2}d_{2}t + 18b_{3}d_{2}t + 16T^{2}d_{1}d_{2} + 4T^{2}d_{1}d_{3} + 16T^{2}d_{2}d_{3} - 6Td_{1}^{2}t- \\ - 24Td_{2}^{2}t - 6Td_{3}^{2}t + 16d_{1}d_{2}t^{2} + 4d_{1}d_{3}t^{2} + 16d_{2}d_{3}t^{2} - 32Td_{1}d_{2}t- \\ - 8Td_{1}d_{3}t - 32Td_{2}d_{3}t); \\ Sh_{3}(x(t),T - t) = \\ = \frac{\left (T-t\right )} {36} (18b_{3}^{2} - 36d_{ 3}x(t) + 3T^{2}d_{ 1}^{2} + 3T^{2}d_{ 2}^{2} + 12T^{2}d_{ 3}^{2} + 3d_{ 1}^{2}t^{2}+ \\ + 3d_{2}^{2}t^{2} + 12d_{3}^{2}t^{2} - 18Tb_{1}d_{3} - 18Tb_{2}d_{3} - 18Tb_{3}d_{3} + 18b_{1}d_{3}t+ \\ + 18b_{2}d_{3}t + 18b_{3}d_{3}t + 4T^{2}d_{1}d_{2} + 16T^{2}d_{1}d_{3} + 16T^{2}d_{2}d_{3}- \\ - 6Td_{1}^{2}t - 6Td_{2}^{2}t - 24Td_{3}^{2}t + 4d_{1}d_{2}t^{2} + 16d_{1}d_{3}t^{2} + 16d_{2}d_{3}t^{2} \\ - 8Td_{1}d_{2}t - 32Td_{1}d_{3}t - 32Td_{2}d_{3}t).\end{array} }$$

Appendix 2

The expression for the IDP calculated for a game of pollution control.

$$\displaystyle{\begin{array}{l} \beta _{1}(t) = \frac{b_{1}^{2}} {2} - d_{1}\left (x_{0} + \left (b_{s} - 3Td_{s}\right )(t - t_{0}) + \frac{3t^{2}d_{ s}} {2} -\frac{3t_{0}^{2}d_{ s}} {2} \right ) -\frac{\left (T-t\right )} {36} (18b_{s}d_{1}- \\ - 18Td_{1}^{2} - 6\tilde{d}_{s}(T - t) + 18d_{1}^{2}t - 36d_{1}\left (b_{s} - 3Td_{s} + 3td_{s}\right ) - 32Td_{1}d_{2} - 32Td_{1}d_{3}- \\ - 8Td_{2}d_{3} + 32d_{1}d_{2}t + 32d_{1}d_{3}t + 8d_{2}d_{3}t) + \frac{T^{2}d_{ 1}^{2}} {3} + \frac{T^{2}d_{ 2}^{2}} {12} + \frac{T^{2}d_{ 3}^{2}} {12} + \frac{d_{1}^{2}t^{2}} {3} + \frac{d_{2}^{2}t^{2}} {12} + \\ + \frac{d_{3}^{2}t^{2}} {12} -\frac{b_{s}d_{1}(T-t)} {2} + \frac{4T^{2}d_{ 1}d_{2}} {9} + \frac{4T^{2}d_{ 1}d_{3}} {9} + \frac{T^{2}d_{ 2}d_{3}} {9} -\frac{2Td_{1}^{2}t} {3} -\frac{Td_{2}^{2}t} {6} -\frac{Td_{3}^{2}t} {6} + \frac{4d_{1}d_{2}t^{2}} {9} + \\ + \frac{4d_{1}d_{3}t^{2}} {9} + \frac{d_{2}d_{3}t^{2}} {9} -\frac{8Td_{1}d_{2}t} {9} -\frac{8Td_{1}d_{3}t} {9} -\frac{2Td_{2}d_{3}t} {9};\end{array} }$$
$$\displaystyle{\begin{array}{l} \beta _{2}(t) = \frac{b_{2}^{2}} {2} - d_{2}\left (x_{0} + \left (b_{s} - 3Td_{s}\right )(t - t_{0}) + \frac{3t^{2}d_{ s}} {2} -\frac{3t_{0}^{2}d_{ s}} {2} \right ) -\frac{\left (T-t\right )} {36} (18b_{s}d_{2}- \\ - 18Td_{2}^{2} - 6\tilde{d}_{s}(T - t) + 18d_{2}^{2}t - 36d_{2}(b_{s} - 3Td_{s} + 3td_{s}) - 32Td_{1}d_{2} - 32Td_{2}d_{3}- \\ - 8Td_{1}d_{3} + 32d_{1}d_{2}t + 8d_{1}d_{3}t + 32d_{2}d_{3}t) + \frac{T^{2}d_{ 1}^{2}} {12} + \frac{T^{2}d_{ 2}^{2}} {3} + \frac{T^{2}d_{ 3}^{2}} {12} + \frac{d_{1}^{2}t^{2}} {12} + \frac{d_{2}^{2}t^{2}} {3} + \\ + \frac{d_{3}^{2}t^{2}} {12} -\frac{Tb_{1}d_{2}} {2} -\frac{Tb_{2}d_{2}} {2} -\frac{Tb_{3}d_{2}} {2} + \frac{b_{1}d_{2}t} {2} + \frac{b_{2}d_{2}t} {2} + \frac{b_{3}d_{2}t} {2} + \frac{4T^{2}d_{ 1}d_{2}} {9} + \frac{T^{2}d_{ 1}d_{3}} {9} + \frac{4T^{2}d_{ 2}d_{3}} {9} - \\ -\frac{Td_{1}^{2}t} {6} -\frac{2Td_{2}^{2}t} {3} -\frac{Td_{3}^{2}t} {6} + \frac{4d_{1}d_{2}t^{2}} {9} + \frac{d_{1}d_{3}t^{2}} {9} + \frac{4d_{2}d_{3}t^{2}} {9} -\frac{8Td_{1}d_{2}t} {9} -\frac{2Td_{1}d_{3}t} {9} -\frac{8Td_{2}d_{3}t} {9}; \\ \beta _{3}(t) = \frac{b_{3}^{2}} {2} - d_{3}\left (x_{0} + \left (b_{s} - 3Td_{s}\right )(t - t_{0}) + \frac{3t^{2}d_{ s}} {2} -\frac{3t_{0}^{2}d_{ s}} {2} \right ) -\frac{(T-t)} {36} (18b_{s}d_{3}- \\ - 18Td_{3}^{2} - 6\tilde{d}_{s}(T - t) + 18d_{3}^{2}t - 36d_{3}(b_{s} - 3Td_{s} + 3td_{s}) - 8Td_{1}d_{2} - 32Td_{1}d_{3}- \\ - 32Td_{2}d_{3} + 8d_{1}d_{2}t + 32d_{1}d_{3}t + 32d_{2}d_{3}t) + \frac{T^{2}d_{ 1}^{2}} {12} + \frac{T^{2}d_{ 2}^{2}} {12} + \frac{T^{2}d_{ 3}^{2}} {3} + \frac{d_{1}^{2}t^{2}} {12} + \frac{d_{2}^{2}t^{2}} {12} + \\ + \frac{d_{3}^{2}t^{2}} {3} -\frac{Tb_{1}d_{3}} {2} -\frac{Tb_{2}d_{3}} {2} -\frac{Tb_{3}d_{3}} {2} + \frac{b_{1}d_{3}t} {2} + \frac{b_{2}d_{3}t} {2} + \frac{b_{3}d_{3}t} {2} + \frac{T^{2}d_{ 1}d_{2}} {9} + \frac{4T^{2}d_{ 1}d_{3}} {9} + \frac{4T^{2}d_{ 2}d_{3}} {9} - \\ -\frac{Td_{1}^{2}t} {6} -\frac{Td_{2}^{2}t} {6} -\frac{2Td_{3}^{2}t} {3} + \frac{d_{1}d_{2}t^{2}} {9} + \frac{4d_{1}d_{3}t^{2}} {9} + \frac{4d_{2}d_{3}t^{2}} {9} -\frac{2Td_{1}d_{2}t} {9} -\frac{8Td_{1}d_{3}t} {9} -\frac{8Td_{2}d_{3}t} {9}. \end{array} }$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gromova, E. (2016). The Shapley Value as a Sustainable Cooperative Solution in Differential Games of Three Players. In: Petrosyan, L., Mazalov, V. (eds) Recent Advances in Game Theory and Applications. Static & Dynamic Game Theory: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-43838-2_4

Download citation

Publish with us

Policies and ethics