Advertisement

Ranking Journals in Sociology, Education, and Public Administration by Social Choice Theory Methods

  • Fuad T. Aleskerov
  • Anna M. BoriskovaEmail author
  • Vladimir V. Pislyakov
  • Vyacheslav I. Yakuba
Chapter
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)

Abstract

An analysis of journals’ rankings based on five commonly used bibliometric indicators (impact factor, article influence score, SNIP, SJR, and H-index) has been conducted. It is shown that despite the high correlation, these single-indicator-based rankings are not identical. Therefore, new approach to ranking academic journals is proposed based on the aggregation of single bibliometric indicators using several ordinal aggregation procedures. In particular, we use the threshold procedure, which allows to reduce opportunities for manipulations.

Keywords

Bibliometrics Journal rankings Ordinal aggregation procedures Threshold procedure 

Notes

Acknowledgements

This study comprises research findings from the “Constructing Rankings by Social Choice methods” project (grant No 12-05-0036, years 2012–2013) carried out within The National Research University Higher School of Economics’ Academic Fund Program. The work was partially financed by the International Laboratory of Decision Choice and Analysis (DeCAn Lab) as a part of project 93.0 (2013) within the Program for Fundamental Research of the National Research University Higher School of Economics.

References

  1. 1.
    Aizerman, M., Aleskerov, F.: Theory of Choice. Amsterdam: North-Holland/Elsevier (1995)zbMATHGoogle Scholar
  2. 2.
    Aleskerov, F., Chistyakov, V., Kalyagin, V.: Social threshold aggregations. Soc. Choice Welf. 35 (4), 627–646 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aleskerov, F.T., Pislyakov, V.V., Subochev, A.N., Chistyakov, A.G.: Rankings of management science journals constructed by methods from Social Choice Theory: Working paper WP7/2011/04. National Research University Higher School of Economics, Moscow (2011) (in Russian)Google Scholar
  4. 4.
    Aleskerov, F., Kataeva, E., Pislyakov, V., Yakuba, V.: ‘Evaluation of scientists’ output using the method of threshold aggregation. Large-scale Syst. Control 44, 172–189 (2013) (in Russian)Google Scholar
  5. 5.
    Aleskerov, F.T., Pislyakov, V.V., Subochev, A.N.: Rankings of economic journals constructed by methods from Social Choice Theory: Working paper WP7/2013/03. Moscow: National Research University Higher School of Economics (2013) (in Russian)Google Scholar
  6. 6.
    Aleskerov, F., Pislyakov, V., Subochev, A.: Ranking Journals in Economics, Management and Political Science by Social Choice Theory Methods. Working paper WP BRP 27/STI/2014, 39 p. Publishing House of the Higher School of Economics, Moscow (2014)Google Scholar
  7. 7.
    Aleskerov, F.T, Boriskova, A.M., Pislyakov, V.V., Yakuba V.I.: Ranking journals in sociology, education and public administration by social choice theory methods. https://www.hse.ru/pubs/share/direct/document/175522561 (2016)Google Scholar
  8. 8.
    Braun, T., Glä nzel, W., Schubert, A.: A Hirsch-type index for journals. Scientometrics 69 (1), 169–173 (2006)Google Scholar
  9. 9.
    Chebotarev, P., Shamis, E.: Preference fusion when the number of alternatives exceeds two: indirect scoring procedures. J. Frankl. Inst. 336, 205–226 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Copeland, A.H.: A reasonable social welfare function (mimeo). Seminar on Application of Mathematics to the Social Sciences. University of Michigan, Ann Arbor (1951)Google Scholar
  11. 11.
    Daniels, H.E.: Round-robin tournament scores. Biometrica 56, 295–299 (1969)CrossRefGoogle Scholar
  12. 12.
    Egghe, L.: Mathematical relations between impact factors and average number of citations. Inf. Process. Manag. 24, 567–576 (1988)CrossRefGoogle Scholar
  13. 13.
    Epstein, D.: Impact factor manipulation. J. Eur. Med. Writ. Assoc. 16 (3), 133–134 (2007)Google Scholar
  14. 14.
    Fisher, J, Shanks, G., Lamp, J.W.: A ranking list for information systems journals. Aust. J. Inf. Syst. 14 (2), 5–18 (2007)Google Scholar
  15. 15.
    Garfield, E., Sher, I.H.: New factors in the evaluation of scientific literature through citation indexing. Am. Doc. 14 (3), 195–201 (1963)CrossRefGoogle Scholar
  16. 16.
    Glänzel, W., Moed, H.F.: Journal impact measures in bibliometric research. Scientometrics 53 (2), 71–193 (2002)CrossRefGoogle Scholar
  17. 17.
    Gonzalez-Pereira, B., Guerrero-Bote, V., Moya-Anegon, F.: A new approach to the metric of journals scientific prestige: the SJR indicator. J. Inf. 4 (3), 379–391 (2010)CrossRefGoogle Scholar
  18. 18.
    Good, I.J.: A note on Condorcet sets. Public Choice 10, 97–101 (1971)CrossRefGoogle Scholar
  19. 19.
    Harzing, A.-W., Mingers, J.: Ranking journals in business and management: a statistical analysis of the Harzing dataset. Eur. J. Inf. Syst. 16 (4), 303–316 (2007)CrossRefGoogle Scholar
  20. 20.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. 102 (46), 16569–16572 (2005)CrossRefGoogle Scholar
  21. 21.
    Jacsó, P.: Differences in the rank position of journals by Eigenfactor metrics and the five-year impact factor in the Journal Citation Reports and the Eigenfactor Project web site. Online Inf. Rev. 34 (3), 496–508 (2010)CrossRefGoogle Scholar
  22. 22.
    Laslier, J.F.: Tournament Solutions and Majority Voting. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Moed, H.F.: The Source normalized impact per paper is a valid and sophisticated indicator of journal citation impact. J. Am. Soc. Inf. Sci. Technol. 62(1), 211–213 (2011)Google Scholar
  24. 24.
    Pislyakov, V.V.: Methods for evaluation of scientific knowledge in terms of citation. Sociol. J. 1, 128–140 (2007) (in Russian)Google Scholar
  25. 25.
    Rousseau, R.: Citation distribution of pure mathematics journals. In: Egghe, L., Rousseau, R. (eds.) Informetrics 87/88, pp. 249–262. Elsevier, Amsterdam (1988)Google Scholar
  26. 26.
    Schwartz, T.: Rationality and the Myth of the Maximum. Noûs 6, 97–117 (1972)CrossRefGoogle Scholar
  27. 27.
    Smith, J.: Aggregation of preferences with variable electorates. Econometrica 41 (6), 1027–1041 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ushakov, I.A.: The problem of choosing the preferable object. Izv. Akad. Nauk SSSR. Tekhnicheskaya Kibernetika 4, 3–7 (1971) (in Russian)Google Scholar
  29. 29.
    Ward, B.: Majority rule and allocation. J. Confl. Resolut. 5, 379–389 (1961)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fuad T. Aleskerov
    • 1
    • 2
  • Anna M. Boriskova
    • 3
    Email author
  • Vladimir V. Pislyakov
    • 1
  • Vyacheslav I. Yakuba
    • 3
  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Institute of Control Sciences of Russian Academy of ScienceMoscowRussia
  3. 3.International Laboratory of Decision Choice and AnalysisNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations