Advertisement

Temporal and Lexical Context of Diachronic Text Documents for Automatic Out-Of-Vocabulary Proper Name Retrieval

  • Irina IllinaEmail author
  • Dominique Fohr
  • Georges Linarès
  • Imane Nkairi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9561)

Abstract

Proper name recognition is a challenging task in information retrieval from large audio/video databases. Proper names are semantically rich and are usually key to understanding the information contained in a document. Our work focuses on increasing the vocabulary coverage of a speech transcription system by automatically retrieving proper names from contemporary diachronic text documents. We proposed methods that dynamically augment the automatic speech recognition system vocabulary using lexical and temporal features in diachronic documents. We also studied different metrics for proper name selection in order to limit the vocabulary augmentation and therefore the impact on the ASR performances. Recognition results show a significant reduction of the proper name error rate using an augmented vocabulary.

Keywords

Speech recognition Out-of-vocabulary words Proper names Vocabulary augmentation 

Notes

Acknowledgements

The authors would like to thank the ANR ContNomina SIMI-2 of the French National Research Agency (ANR) for funding.

References

  1. 1.
    Allauzen, A., Gauvain, J.-L.: Diachronic vocabulary adaptation for broadcast news transcription. In: Proceedings of Interspeech (2005)Google Scholar
  2. 2.
    Bechet, F., Yvon, F.: Les Noms Propres en Traitement Automatique de la Parole. In: Revue Traitement Automatique des Langues, vol. 41(3), pp. 672–708 (2000)Google Scholar
  3. 3.
    Bertoldi, N., Federico, M.: Lexicon adaptation for broadcast news transcription. In: Adaptation 2001, pp. 187–190 (2001)Google Scholar
  4. 4.
    Bigot, B., Senay, G., Linares, G., Fredouille, C., Dufour, R.: Person name recognition in ASR outputs using continous context models. In: Proceedings of ICASSP (2013)Google Scholar
  5. 5.
    Church, K., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics (1989)Google Scholar
  6. 6.
    Federico, M., Bertoldi, N.: Broadcast news LM adaptation using contemporary texts. In: Proceedings of Interspeech, pp. 239–242 (2001)Google Scholar
  7. 7.
    Friburger, N., Maurel, D.: Textual similarity based on proper names. In: Proceedings of the Workshop Mathematical/Formal Methods in Information Retrieval, pp. 155–167 (2002)Google Scholar
  8. 8.
    Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, J.-F., Gravier, G.: The ESTER Phase II evaluation campaign for the rich transcription of french broadcast news. In: Proceedings of Interspeech (2005)Google Scholar
  9. 9.
    Illina I., Fohr, D., Mella, O., Cerisara, C.: The automatic news transcription system: ANTS, some real time experiments. In: Proceedings of ICSLP (2004)Google Scholar
  10. 10.
    Illina I., Fohr D., Jouvet, D.: Grapheme-to-Phoneme conversion using conditional random fields. In: Proceedings of Interspeech (2011)Google Scholar
  11. 11.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of International Conference on Machine Learning, pp. 282–289 (2001)Google Scholar
  12. 12.
    Lee, A., Kawahara, T.: Recent development of open-source speech recognition engine Julius. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC (2009)Google Scholar
  13. 13.
    Oger, S., Linarès, G., Béchet, F.: Local methods for on-demand out-of-vocabulary word retrieval. In: Proceedings of the Language Resources and Evaluation Conference LREC (2008)Google Scholar
  14. 14.
    Parada, C., Dredze, M., Filimonov, F., Jelinek, F.: Contextual information improves OOV Detection in Speech. In: Proceedings of NAACL (2010)Google Scholar
  15. 15.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of ICNMLP (1994)Google Scholar
  16. 16.
    Singhal, A.: Modern information retrieval: a brief overview. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 24(4), 35–43 (2001)Google Scholar
  17. 17.
    Stolcke, A.: SRILM - an extensible language modeling toolkit. In: Proceedings of ICSLP (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Irina Illina
    • 1
    Email author
  • Dominique Fohr
    • 1
  • Georges Linarès
    • 2
  • Imane Nkairi
    • 1
  1. 1.MultiSpeech Team, LORIA-INRIAVillers-les-NancyFrance
  2. 2.LIA – University of AvignonAvignonFrance

Personalised recommendations