Skip to main content

Atomic Processes of Pulsed Laser Deposition During Growth of Alkaline Earth Oxide Thin Films

  • Chapter
  • First Online:
Correlated Functional Oxides
  • 663 Accesses

Abstract

Pulsed laser deposition (PLD) is one of the most powerful techniques to deposit thin films of multielemental materials such as electronic functional oxides. The PLD is a quite simple and convenient technique, so it is easy to prepare a variety of thin films. However, the physics beyond process has not been fully understood. The comprehension of PLD physics is expected to be fundamental to lead the improvement of thin films quality. This chapter investigates the physical processes of PLD, describing unique photochemical reaction during laser ablation , then discusses how conditions of the laser affect the ablation process for the very simple case of the ablation of alkaline earth metals. In this part, a unique photochemical process is shown. In the latter part of the chapter, it is introduced a technique based on in situ reflection of high-energy electron diffraction, to monitor the PLD process in real time. We consider that the studies reported in this chapter will be a first step enabling the PLD fabricating “tailored” oxide heterostructures and playing a key role in new physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Izyumskaya, Y. Alivov, H. Morkoc, Oxides oxides, and more oxides: high- oxides, ferroelectrics, ferromagnetics, and multiferroics. Crit. Rev. Solid State Mater. Sci. 34, 89–179 (2009)

    Article  Google Scholar 

  2. N. Bloembergen, Laser‐material interactions; fundamentals and applications, in, eds. by J.C. Miller, D.B. Geohegan DBCOLA-93. The 2nd International Conference on Laser Ablation, Knoxville, April 1993. AIP Conf Proc, vol. 288 (American Institute of Physics, New York, 1993), p. 3

    Google Scholar 

  3. W. Marine et al., Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling. Appl. Phys. A 79, 771–774 (2004)

    Google Scholar 

  4. M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole auger decay. Phys. Rev. Lett. 40, 964–967 (1978)

    Article  Google Scholar 

  5. R.L. Webb et al., Interactions of wide band-gap single crystals with 248 nm excimer laser radiation. I. MgO. J. Appl. Phys. 74, 2323–2337 (1993)

    Article  Google Scholar 

  6. R.L. Webb et al., Interactions of wide band-gap single crystals with 248 nm excimer laser radiation. II. NaCl. J. Appl. Phys. 74, 2338–2346 (1993)

    Article  Google Scholar 

  7. N. Itoh, T. Nakayama, Mechanism of neutral particle emission from electron-hole plasma near solid surface. Phys. Lett. A 92, 471–475 (1982)

    Article  Google Scholar 

  8. A. Vertes et al., Modeling the thermal-to-plasma transitions for Cu photoablation. IBM J. Res. Develop. 38, 3–10 (1994)

    Article  Google Scholar 

  9. R. Kelly et al., Laser sputtering: Part I. On the existence of rapid laser sputtering at 193 nm. Nucl. Instr. Meth. Phys. Res. B 9, 329–340 (1985)

    Article  Google Scholar 

  10. I. Lee et al., Surface-plasmon-induced desorption by the attenuated-total-reflection method. Phys. Rev. B 39, 8012–8014 (1989)

    Article  Google Scholar 

  11. H. Helvajian, R. Welle, Threshold level laser photoablation of crystalline silver: Ejected ion translational energy distributions. J. Chem. Phys. 91, 2616–2626 (1989)

    Article  Google Scholar 

  12. T. Ohnishi et al., Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005)

    Article  Google Scholar 

  13. J.H. Song et al., Enhanced thermodynamic stability of epitaxial oxide thin films. Adv. Mater. 20, 2528–2532 (2008)

    Article  Google Scholar 

  14. H. Nishikawa, R. Yoshikawa, Controlling the chemical composition of hydroxyapatite thin films using pulsed laser deposition. Trans. Mat. Res. Soc. Jpn. 40, 111–114 (2015)

    Article  Google Scholar 

  15. H. Nishikawa et al., Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition. Mater. Lett. 165, 95–98 (2016)

    Article  Google Scholar 

  16. J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba − La − Cu − O system, Z Phys B 64, 189–193 (1986)

    Google Scholar 

  17. H. Tabata et al., Strain and proximity effect in (La, Sr)2CuO4-based superconducting superlattices. Phys. Rev. Lett. 70, 2633–2636 (1993)

    Article  Google Scholar 

  18. K. Ueda et al., Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064–1066 (1998)

    Article  Google Scholar 

  19. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas atthe LaAlO3/SrTiO3 heterointerface. Nature (Lond.) 427, 423–426 (2004)

    Article  Google Scholar 

  20. J.J. Harris, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE. Surf. Sci. 103, L90–L96 (1981)

    Article  Google Scholar 

  21. L.K. Ang et al., Analysis of laser absorption on a rough metal surface. Appl. Phys. Lett. 70, 696–698 (1997)

    Article  Google Scholar 

  22. R.W. Dreyfus, Cu0, Cu+ , and Cu2 from excimer-ablated copper. J. Appl. Phys. 69, 1721–1729 (1991)

    Google Scholar 

  23. J.P. Zheng et al., Generation of high-energy atomic beams in laser-superconducting target interactions. Appl. Phys. Lett. 54, 280–282 (1989)

    Article  Google Scholar 

  24. R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843–8859 (1990)

    Article  Google Scholar 

  25. K.A. Kress, G.J. Lapeyre, Photoemission measurement of the d-band energies in calcium. Solid State Commun. 9, 827–830 (1971)

    Article  Google Scholar 

  26. L. Gaudart et al., Photoemission from very thin films of strontium. Action of an electric field. Phys. Rev. B 15, 3078–3086 (1977)

    Article  Google Scholar 

  27. L. Gaudart et al., Work functions and structures of alkaline-earth thin films. J. Appl. Phys. 49, 4105–4110 (1978)

    Article  Google Scholar 

  28. N.M. Khambatta et al., Upper bound for a three-photon excitation cross section in atomic argon in the ultraviolet regime. Phys. Rev. A 39, 3842–3845 (1989)

    Article  Google Scholar 

  29. F. Blazer et al., Photodesorption of Na atoms from rough Na surfaces. J. Chem. Phys. 106, 7995–8012 (1997)

    Article  Google Scholar 

  30. L.I. Johansson, I. Lindau, Photoemission studies of the energy dependence of the bulk plasmon loss intensity in Si and Al. Solid State Commun. 29, 379–382 (1979)

    Article  Google Scholar 

  31. J.M. Elson, R.H. Ritchie, Photon interactions at a rough metal surface. Phys. Rev. B 4, 4129–4138 (1971)

    Article  Google Scholar 

  32. M.L. Shea, R.N. Compton, Surface-plasmon ejection of Ag+ ions from laser irradiation of a roughened silver surface. Phys. Rev. B 47, 9967–9970 (1993)

    Google Scholar 

  33. M. Naito, H. Sato, Reflection high-energy electron diffraction study on the SrTiO3 surface structure. Phys. C 229, 1–11 (1994)

    Article  Google Scholar 

  34. M. Kawasaki et al., Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994)

    Article  Google Scholar 

  35. G. Koster et al., Surface morphology determined by (001) single-crystal SrTiO3 termination. Phys. C 339, 215–230 (2000)

    Article  Google Scholar 

  36. V.S. Achutharaman et al., Origin of RHEED intensity oscillations during the growth of (Y, Dy)Ba2Cu3O7-x thin films. Phys. Rev. B 50, 8122–8125 (1994)

    Article  Google Scholar 

  37. G. Lehmpfuhl et al., Interpretation of RHEED oscillations during MBE growth. Surf. Sci. 245, L159–L162 (1991)

    Article  Google Scholar 

  38. T. Shitara et al., Step-density variations and reflection high-energy electron-diffraction intensity oscillations during epitaxial growth on vicinal GaAs(001). Phys. Rev. B 46, 6815–6824 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. T. Kawai, Dr. M. Kanai, Prof. G. Szabo and Prof. J. J. Dubowski for fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nishikawa, H. (2017). Atomic Processes of Pulsed Laser Deposition During Growth of Alkaline Earth Oxide Thin Films. In: Nishikawa, H., Iwata, N., Endo, T., Takamura, Y., Lee, GH., Mele, P. (eds) Correlated Functional Oxides. Springer, Cham. https://doi.org/10.1007/978-3-319-43779-8_9

Download citation

Publish with us

Policies and ethics