Skip to main content

Interactive Depth of Focus for Improved Depth Perception

  • Conference paper
  • First Online:
Book cover Medical Imaging and Augmented Reality (MIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9805))

Included in the following conference series:

Abstract

The need to look into human body for better diagnosis, improved surgical planning and minimally invasive surgery led to breakthroughs in medical imaging. But, intra-operatively a surgeon needs to look at multi-modal imaging data on multiple displays and to fuse the multi-modal data in the context of the patient. This adds extra mental effort for the surgeon in an already high cognitive load surgery. The obvious solution to augment medical object in the context of patient suffers from inaccurate depth perception. In the past, some visualizations have addressed the issue of wrong depth perception, but not without interfering with the natural intuitive view of the surgeon. Therefore, in the current work an interactive depth of focus (DoF) blur method for AR is proposed. It mimics the naturally present DoF blur effect in a microscope. DoF blur forces the cue of accommodation and convergence to come into effect and holds potential to give near metric accuracy; its quality decreases with distance. This makes it suitable for microscopic neurosurgical applications with smaller working depth ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  2. Bajura, M., Fuchs, H., Ohbuchi, R.: Merging virtual objects with the real world: seeing ultrasound imagery within the patient. ACM SIGGRAPH Comput. Graph. 26(2), 203–210. ACM(1992)

    Google Scholar 

  3. Krüger, J., Schneider, J., Westermann, R.: Clearview: an interactive context preserving hotspot visualization technique. IEEE Trans. Vis. Comput. Graph. 12(5), 941–948 (2006)

    Article  Google Scholar 

  4. Ropinski, Timo, Steinicke, Frank, Hinrichs, Klaus H.: Visually Supporting Depth Perception in Angiography Imaging. In: Butz, Andreas, Fisher, Brian, Krüger, Antonio, Olivier, Patrick (eds.) SG 2006. LNCS, vol. 4073, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)

    Google Scholar 

  6. Johnson, L.G., Edwards, P., Hawkes, D.: Surface transparency makes stereo overlays unpredictable: the implications for augmented reality. Stud. Health Technol. Inform. 94, 131–136 (2003)

    Google Scholar 

  7. Landy, M.S., Maloney, L.T., Johnston, E.B., Young, M.: Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35(3), 389–412 (1995)

    Article  Google Scholar 

  8. Cutting, J., Vishton, P.: Perceiving layout and knowing distances. In: Perception of Space and Motion, pp. 69–117 (1995)

    Google Scholar 

  9. Sundet, J.: Effects of colour on perceived depth: review of experiments and evalutaion of theories. Scand. J. Psychol. 19(1), 133–143 (1978)

    Article  Google Scholar 

  10. Dixon, B.J., Daly, M.J., Chan, H., Vescan, A.D., Witterick, I.J., Irish, J.C.: Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg. Endosc. 27(2), 454–461 (2013)

    Article  Google Scholar 

  11. Bailey, R., Grimm, C., Davoli, C.: The effect of warm and cool object colors on depth ordering. In: Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, p. 161. ACM (2006)

    Google Scholar 

  12. Nissen, M.J., Pokorny, J.: Wavelength effects on simple reaction time. Percept. Psychophysics 22(5), 457–462 (1977)

    Article  Google Scholar 

  13. Breitmeyer, B.G., Breier, J.I.: Effects of background color on reaction time to stimuli varying in size and contrast: inferences about human M channels. Vision. Res. 34(8), 1039–1045 (1994)

    Article  Google Scholar 

  14. Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM SIGGRAPH Comput. Graph. 15(3), 297–305 (1981)

    Article  Google Scholar 

  15. Kersten-Oertel, Marta, Drouin, Simon, Chen, Sean J.S., Collins, DLouis: Volume Visualization for Neurovascular Augmented Reality Surgery. In: Liao, Hongen, Linte, Cristian A., Masamune, Ken, Peters, Terry M., Zheng, Guoyan (eds.) MIAR 2013 and AE-CAI 2013. LNCS, vol. 8090, pp. 211–220. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Shuhaiber, J.H.: Augmented reality in surgery. Arch. Surg. 139(2), 170–174 (2004)

    Article  Google Scholar 

  17. Bichlmeier, C., Wimmer, F., Heining, S.M., Navab, N.: Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In: ISMAR, pp. 129–138 (2007)

    Google Scholar 

  18. Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Ann. Rev. Biomed. Eng. 12, 119–142 (2010)

    Article  Google Scholar 

  19. Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imaging Graph. 37(2), 98–112 (2013)

    Article  Google Scholar 

  20. Roberts, D.W., Strohbehn, J.W., Hatch, J.F., Murray, W., Kettenberger, H.: A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 65(4), 545–549 (1986)

    Article  Google Scholar 

  21. Tedford Jr., W.H., Bergquist, S.L., Flynn, W.E.: The size-color illusion. J. Gen. Psychol. 97(1), 145–149 (1977)

    Google Scholar 

  22. Hillaire, S., Lécuyer, A., Cozot, R., Casiez, G.: Depth-of-field blur effects for first-person navigation in virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 203–206 (2007)

    Google Scholar 

  23. Hillaire, S., Lécuyer, A., Cozot, R., Casiez, G.: Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In: IEEE Virtual Reality Conference, pp. 47–50 (2008)

    Google Scholar 

  24. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. Univ of California Press, Berkeley (1954)

    Google Scholar 

  25. Gilinsky, A.S.: Perceived size and distance in visual space. Psychol. Rev. 58(6), 460 (1951)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kalia, M., Schulte zu Berge, C., Roodaki, H., Chakraborty, C., Navab, N. (2016). Interactive Depth of Focus for Improved Depth Perception. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds) Medical Imaging and Augmented Reality. MIAR 2016. Lecture Notes in Computer Science(), vol 9805. Springer, Cham. https://doi.org/10.1007/978-3-319-43775-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43775-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43774-3

  • Online ISBN: 978-3-319-43775-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics