Skip to main content

Toward Physical Realizations of Thermodynamic Resource Theories

  • Chapter
  • First Online:
Information and Interaction

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

“This is your arch-nemesis.” The thank-you slide of my resentation remained onscreen, and the question-and-answer session had begun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Conventional thermodynamics, developed during the 1800s, is arguably the first, most famous resource theory. But thermodynamics was cast in explicitly resource-theoretic terms only recently.

  2. 2.

    More precisely, the agent could extract the capacity to perform work. I omit the extra words for brevity.

  3. 3.

    Many TRT arguments rely on quasiclassicality as a simplifying assumption. After proving properties of quasiclassical systems, thermodynamic resource theorists attempt generalizations to coherent states.

  4. 4.

    \(D_0\) and \(D_\infty \) are called \(D_\mathrm{min}\) and \(D_\mathrm{max}\) in [32]. I follow the naming convention in [30]: if P denotes a d-element probability distribution and u denotes the uniform distribution \(( \frac{1}{d}, \ldots , \frac{1}{d} )\), then \(D_\infty (P ||u) = \log (d) - H_\infty (P )\), and \(D_0 (P ||u) = \log (d) - H_0 (P )\).

  5. 5.

    The authors discuss catalysis, the use of an ancilla to facilitate a transformation. Let \(R = (\rho , H_R)\) denote a state that cannot transform into \(S = (\sigma , H_S)\) by thermal operations: \(R \not \mapsto S\). Some catalyst \(C = (\xi , H_C)\) might satisfy \((\rho \otimes \xi , H_R + H_C) \mapsto (\sigma \otimes \xi , H_S + H_C)\). Catalysts act like engines used to extract work from a pair of heat baths. Engines degrade, so a realistic transformation might yield \(\sigma \otimes \tilde{\xi }\), wherein \(\tilde{\xi }\) resembles \(\xi \). For certain definitions of “resembles,” the agent can extract arbitrary amounts of work by negligibly degrading C. Brandão et al. quantify this extraction in terms of the dimension \(\mathrm{dim}( \mathscr {H}_C )\) of the Hilbert space \(\mathscr {H}_C\) on which \(\xi \) is defined. The more particles the catalyst contains, the greater the \(\mathrm{dim}( \mathscr {H}_C )\). Such one-shot results depend on the number of particles in the system represented by “one copy” of C.

  6. 6.

    The functional form of \(W_\mathrm{cost}^{\varepsilon }(R)\) is derived in [32, Suppl. Note 4]. The proof relies on Theorem 2. The proof of Theorem 2 specifies how a TRT agent can perform an arbitrary free unitary. Hence the thermal operation that generates a \(\tilde{R}\) is described indirectly.

  7. 7.

    Other goals include the mathematical isolation, quantification, and characterization of single physical quantities. Want to learn how entanglement empowers you to create more states and to perform more operations than accessible with only separable states? Use a resource theory for entanglement. Want to learn how accessing information empowers you? Use the resource theory for information [30, 34].

  8. 8.

    Such experimentalists value coherence similarly to TRT agents: in experiments, coherent entangled states offer access to never-before-probed physics. In quantum computers, entanglement speeds up calculations. TRT agents value coherence because they can catalyze transformations with coherent states [2]. Agents can also “unlock” work from coherence [43].

  9. 9.

    One might worry that \(\mathscr {M}\) might not occupy a quasiclassical state after coupling to \(\mathscr {S}\). But \(\mathscr {M}\) has a totally degenerate Hamiltonian \(\mathbbm {1}_d\). If \(\rho _M\) has coherences relative to the energy eigenbasis, free unitaries can eliminate them [30].

  10. 10.

    One might object that the measurement could project the memory’s quantum state onto a pure state. Transforming any pure state into \(\left| 0 \right\rangle \) costs no work: the transforming unitary commutes with the Hamiltonian \(\mathbbm {1}_d\) and so is free [30]. But the agent could be fined the work that one would need to erase \(\mathscr {M}\) if one refrained from measuring \(\mathscr {M}\). Imagine that a “measurement bank” implements measurements: the agent hands \(\mathscr {M}\) to a teller. Depending on the memory’s state, the teller and agent agree on a fee, which the agent pays with a charged battery. The teller measures \(\mathscr {M}\); announces the outcome; resets \(\mathscr {M}\); stores the battery’s work contents in a vault; and returns the reset memory \(( |0 \rangle \!\langle 0 |, \mathbbm {1}_d)\) and the empty battery \((|0 \rangle \!\langle 0 |, W |W \rangle \!\langle W |)\) to the agent.

  11. 11.

    Which \(\mathscr {M}^\gamma \) achieves the maximum follows from the forms of R and \(\tilde{R}\). The experimentalist chooses the form of R. The form of the \(\tilde{R}\) produced by the thermal operation is described in [32, Suppl. Note 4]. (I have assumed that the \(\tilde{R}\) produced by the thermal operation is the state produced in the experiment. But no experiment realizes a theoretical model exactly. This discrepancy should be incorporated into calculations of errors.).

  12. 12.

    I have ignored limitations on the experimentalist. For example, I have imagined that \(\mathscr {E}\) can be implemented infinitely many times and that infinitely many copies of \(\rho \) can be prepared. They cannot. These limitations should be incorporated into the error associated with \(\varDelta \).

  13. 13.

    Granted, one-shot information theory describes the simultaneous processing of finite numbers of copies of a probability distribution or quantum state. The finite numbers referred to above are numbers of sequential trials. The TRT manifestation of \(\varepsilon \) does not contradict one-shot information theory. Yet the former contradicts the spirit of the latter.

References

  1. Åberg, J.: Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013)

    Article  Google Scholar 

  2. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 15 (2014)

    Article  Google Scholar 

  3. Agarwal, G.S.: Quantum Optics. Cambridge U.P. (2013)

    Google Scholar 

  4. Alemany, A., Ritort, F.: Fluctuation theorems in small systems: extending thermodynamics to the nanoscale. Europhys. News 41, 27–30 (2010)

    Article  Google Scholar 

  5. Alhambra, Á.M., Oppenheim, J., Perry, C.: What is the probability of a thermodynamical transition?. ArXiv e-prints (2015)

    Google Scholar 

  6. An, S., Zhang, J.N., Um, M., Lv, D., Lu, Y., Zhang, J., Yin, Z.Q., Quan, H.T., Kim, K.: Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 11, 193–199 (2015)

    Article  Google Scholar 

  7. Bartlett, S.D., Rudolph, T., Spekkens, R.W., Turner, P.S.: Degradation of a quantum reference frame. New J. Phys. 8, 4 (2006)

    Article  Google Scholar 

  8. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Modern Phys. 79, 2 (2007). http://dx.doi.org/10.1103/RevModPhys.79.555

  9. Bérut, A., Petrosyan, A., Ciliberto, S.: Detailed Jarzynski equality applied to a logically irreversible procedure. Europhys. Lett. 103(6), 3275–3279 (2013)

    Article  Google Scholar 

  10. Blickle, V., Speck, T., Helden, L., Seifert, U., Bechinger, C.: Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 7 (2006). http://link.aps.org/doi/10.1103/PhysRevLett.96.070603

  11. Brandao, F.G.S.L., Datta, N.: One-shot rates for entanglement manipulation under non-entangling maps. ArXiv e-prints (2009)

    Google Scholar 

  12. Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 25 (2013)

    Article  Google Scholar 

  13. Brandão, F.G.S.L., Horodecki, M., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Nat. Acad. Sci. U.S.A. 112, 11 (2014)

    Google Scholar 

  14. Buscemi, F., Datta, N.: The quantum capacity of channels with arbitrarily correlated noise. ArXiv e-prints (2009)

    Google Scholar 

  15. Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58(7), 43–48 (2005)

    Article  Google Scholar 

  16. Campisi, M., Hänggi, P., Talkner, P.: Colloquium: quantum fluctuation relations: foundations and applications. Rev. Modern Phys. 83(3), 771–791 (2011)

    Article  ADS  MATH  Google Scholar 

  17. Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D 26(8), 1817–1839 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cheng, J., Sreelatha, S., Hou, R., Efremov, A., Liu, R., van der Maarel, J.R.C., Wang, Z.: Bipedal nanowalker by pure physical mechanisms. Phys. Rev. Lett. 109, 23 (2012)

    Article  Google Scholar 

  19. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. ArXiv e-prints (2014)

    Google Scholar 

  20. Córcole, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015)

    Google Scholar 

  21. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2012)

    Google Scholar 

  22. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999)

    Article  ADS  Google Scholar 

  23. Czech, B., Hayden, P., Lashkari, N., Swingle, B.: The information theoretic interpretation of the length of a curve. ArXiv e-prints (2014)

    Google Scholar 

  24. Datta, N.: Min-and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  25. Eddington, A.S.: The Nature of the Physical World. MacMillan (1929)

    Google Scholar 

  26. van Erven, T., Harremoës, P.: R’enyi divergence and kullback-leibler divergence. ArXiv e-prints (2012). http://adsabs.harvard.edu/abs/2012arXiv1206.2459V

  27. Faucheux, L.P., Bourdieu, L.S., Kaplan, P.D., Libchaber, A.J.: Optical thermal ratchet. Phys. Rev. Lett. 74(9), 1504–1507 (1995)

    Article  ADS  Google Scholar 

  28. Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. ArXiv e-prints (2015)

    Google Scholar 

  29. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. ArXiv e-prints (2009)

    Google Scholar 

  30. Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Yunger Halpern, N.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Reports 538 0, 1–58 (2015). http://www.sciencedirect.com/science/article/pii/S037015731500229X

  31. Harlow, D.: Jerusalem lectures on black holes and quantum information. ArXiv e-prints (2014)

    Google Scholar 

  32. Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 1–6 (2013)

    Article  Google Scholar 

  33. Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 6 (2003). http://dx.doi.org/10.1103/PhysRevA.67.062104

  34. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90 (2003)

    Google Scholar 

  35. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Modern Phys. 81, 2 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Janzing, D., Wocjan, P., Zeier, R., Geiss, R., Beth, T.: Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39(12), 2717–2753 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)

    Article  ADS  Google Scholar 

  38. Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56(5), 5018–5035 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  39. Jarzynski, C., Quan, H.T., Rahav, S.: The quantum-classical correspondence principle for work distributions. ArXiv e-prints (2015)

    Google Scholar 

  40. Jennings, D.: Private communication (2015)

    Google Scholar 

  41. Joule, J.P.: On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Philos. Mag. xxvii, 205 (1845)

    Google Scholar 

  42. Jun, Y., Gavrilov, M., Bechhoefer, J.: High-precision test of landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 19 (2014)

    Article  Google Scholar 

  43. Korzekwa, K., Lostaglio, M., Oppenheim, J., Jennings, D.: The extraction of work from quantum coherence. ArXiv e-prints (2015)

    Google Scholar 

  44. Koski, J.V., Maisi, V.F., Pekola, J.P., Averin, D.V.: Experimental realization of a Szilárd engine with a single electron. Proc. Nat. Acad. Sci. U.S.A. 111 (2014)

    Google Scholar 

  45. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science (New York, N.Y.) 292(5574), 1832–1835 (2002)

    Google Scholar 

  47. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6 (2015)

    Google Scholar 

  48. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 2 (2015)

    Google Scholar 

  49. Lostaglio, M.: Private communication (2015)

    Google Scholar 

  50. Malabarba, A.S.L., Short, A.J., Kammerlander, P.: Clock-driven quantum thermal engines. New J. Phys, 17 (2015)

    Google Scholar 

  51. Manosas, M., Mossa, A., Forns, N., Huguet, J., Ritort, F.: Dynamic force spectroscopy of DNA hairpins: II. Irreversibility and dissipation. J. Stat. Mech. Theory Exp. 2 (2009)

    Google Scholar 

  52. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 3 (2013)

    Article  Google Scholar 

  53. Mazza, L., Rossini, D., Fazio, R., Endres, M.: Detecting two-site spin-entanglement in many-body systems with local particle-number fluctuations. New J. Phy. 171, 013015–013015 (2015). http://adsabs.harvard.edu/abs/2015NJPh...17a3015M. doi:10.1088/1367-2630/17/1/013015

  54. Navascués, M., García-Pintos, L.P.: Non-thermal quantum channels as a thermodynamical resource. ArXiv e-prints (2015)

    Google Scholar 

  55. Ng, N.: Private communication (2015)

    Google Scholar 

  56. Ng, N.H.Y., Mančinska, L., Cirstoiu, C., Eisert, J., Wehner, S.: Limits to catalysis in quantum thermodynamics. ArXiv e-prints (2014)

    Google Scholar 

  57. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)

    Google Scholar 

  58. Oppenheim, J.: In: Open-Problem Session. Presented at “Beyond i.i.d. in Information Theory 2015”. Banff, Canada (2015)

    Google Scholar 

  59. Pekola, J.P.: Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 2 (2015)

    Article  Google Scholar 

  60. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Reeb, D., Wolf, M.M.: An improved Landauer principle with finite-size corrections. New J. Phys. 16, 10 (2014)

    Article  Google Scholar 

  62. Renner, R.: Security of Quantum Key Distribution. Ph.D. Thesis (2005)

    Google Scholar 

  63. Renner, R.: Private communication (2015)

    Google Scholar 

  64. Rényi, A.: On measures of entropy and information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)

    Google Scholar 

  65. Sagawa, T., Ueda, M.: Generalized jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 9 (2010)

    Google Scholar 

  66. Saira, O.P., Yoon, Y., Tanttu, T., Möttönen, M., Averin, D.V., Pekola, J.P.: Test of the jarzynski and crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 109, 18 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.180601

  67. Salek, S., Wiesner, K.: Fluctuations in single-shot \(\epsilon \)-deterministic work extraction. ArXiv e-prints (2015)

    Google Scholar 

  68. Schroeder, D.V.: An Introduction to Thermal Physics. Addison Wesley, San Francisco, CA (2000)

    Google Scholar 

  69. Skrzypczyk, P., Short, A.J., Popescu, S.: Extracting work from quantum systems. arXiv:1302.2811 (2013)

  70. Skrzypczyk, P., Short, A.J., Popescu, S.: Extracting work from quantum systems. ArXiv e-prints (2013)

    Google Scholar 

  71. Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik 53(11–12), 840–856 (1929)

    Article  ADS  MATH  Google Scholar 

  72. Tajima, H., Hayashi, M.: Refined carnot’s theorem. asymptotics of thermodynamics with finite-size heat baths. ArXiv e-prints (2014)

    Google Scholar 

  73. Tomamichel, M.: A framework for non-asymptotic quantum information theory. arXiv:1203.2142 (2012)

  74. Veitch, V., Hamed Mousavian, S.A., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16, 1 (2014)

    Article  MathSciNet  Google Scholar 

  75. Vinjanampathy, S., Anders, J.: Quantum thermodynamics. ArXiv e-prints (2015)

    Google Scholar 

  76. Wilming, H., Gallego, R., Eisert, J.: Second laws under control restrictions. ArXiv e-prints (2014)

    Google Scholar 

  77. Winter, A., Yang, D.: Operational resource theory of coherence. ArXiv e-prints (2015)

    Google Scholar 

  78. Woods, M.P., Ng, N., Wehner, S.: The maximum efficiency of nano heat engines depends on more than temperature. ArXiv e-prints (2015)

    Google Scholar 

  79. Yunger Halpern, N.: Beyond heat baths II: framework for generalized thermodynamic resource theories. ArXiv e-prints (2014)

    Google Scholar 

  80. Yunger Halpern, N., Renes, J.M.: Beyond heat baths: generalized resource theories for small-scale thermodynamics. Phys. Rev. E 93, 022126 (2016)

    Google Scholar 

  81. Yunger Halpern, N., Garner, A.J.P., Dahlsten, O.C.O., Vedral, V.: Introducing one-shot work into fluctuation relations. New J. Phys. 17 (2015)

    Google Scholar 

  82. Yunger Halpern, N., Garner, A.J.P., Dahlsten, O.C.O., Vedral, V.: What’s the worst that could happen? One-shot dissipated work from R’enyi divergences. ArXiv e-prints (2015)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Fernando Brandão, Lídia del Rio, Ian Durham, Manuel Endres, Tobias Fritz, Alexey Gorshkov, Christopher Jarzynski, David Jennings, Matteo Lostaglio, Evgeny Mozgunov, Varun Narasimhachar, Nelly Ng, John Preskill, Renato Renner, Dean Rickles, Jim Slinkman, Stephanie Wehner, and Mischa Woods for conversations and feedback. This research was supported by an IQIM Fellowship, NSF grant PHY-0803371, and a Virginia Gilloon Fellowship. The Institute for Quantum Information and Matter (IQIM) is an NSF Physics Frontiers Center supported by the Gordon and Betty Moore Foundation. Stephanie Wehner and QuTech offered hospitality at TU Delft during the preparation of this manuscript. I am grateful to Ian Durham and Dean Rickles for soliciting this paper. Finally, I thank that seminar participant for galvanizing this exploration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Yunger Halpern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yunger Halpern, N. (2017). Toward Physical Realizations of Thermodynamic Resource Theories. In: Durham, I., Rickles, D. (eds) Information and Interaction. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-43760-6_8

Download citation

Publish with us

Policies and ethics