Skip to main content

The Use of Whole Genome Sequencing for Surveillance of Enteric Organisms by United States Public Health Laboratories

  • Chapter
  • First Online:
Applied Genomics of Foodborne Pathogens

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

  • 941 Accesses

Abstract

In the United States, surveillance by public health laboratories of enteric organisms is undergoing a technological revolution. The advent of affordable, massively parallel DNA sequencing technology and leadership from the FDA and CDC has put these laboratories at the forefront of this new era of whole genome sequence based surveillance. Pulsed-Field Gel Electrophoresis has been the gold standard for enteric pathogen subtyping in the United State over the past two decades. Numerous studies have shown that bacterial typing based on genomic sequence data has greater discriminatory power and better able to assist in the identification of the source of an outbreak compared to PFGE. The data is so compelling that PulseNet, the national enteric disease subtyping method in the United States, expects to transition entirely to these technologies in the next few years.

As the United States of America (US) enteric surveillance network transitions to a new technology, many uncertainties and challenges exist for the public health laboratories. Challenges familiar to public health laboratories include optimizing workflows, quality assurance and quality control, and funding. But there are also unfamiliar challenges that relate to the sequencing technology itself such as the need for highly specialized bioinformatics interpretation of the data and how to communicate the complex, new information to partners. This chapter examines current practices, benefits, and challenges in the United States public health laboratory as the next generation of surveillance technologies are implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scallan E, Mahon BE, Hoekstra RM, Griffin PM. Estimates of illnesses, hospitalizations and deaths caused by major bacterial enteric pathogens in young children in the United States. Pediatr Infect Dis J. 2013;32(3):217–21. doi:10.1097/INF.0b013e31827ca763.

    PubMed  Google Scholar 

  2. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, NCSP Comparative Sequencing Program Group, Henderson DK, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148), 148ra16. doi:10.1126/scitranslmed.3004129.

    Article  Google Scholar 

  3. Stucki D, Ballif M, Bodmer T, Coscolla M, Maurer AM, Droz S, et al. Tracking a tuberculosis outbreak over 21 years: strain-specific single nucleotide polymorphism-typing combined with targeted whole genome sequencing. J Infect Dis. 2014;211(8):1306–16. doi:10.1093/infdis/jiu601.

    PubMed  PubMed Central  Google Scholar 

  4. Chinthapalli K. DNA sequencing helped to limit spread of MRSA in a neonatal unit. BMJ. 2012;345, e7746. doi:10.1136/bmj.e7746.

    Article  PubMed  Google Scholar 

  5. Tellez-Sosa J, Rodriguez MH, Gomez-Barreto RE, Valdovinos-Torres H, Hidalgo AC, Cruz-Hervert P, et al. Using high-throughput sequencing to leverage surveillance of genetic diversity and oseltamivir resistance: a pilot study during the 2009 influenza A(H1N1) pandemic. PLoS One. 2013;8(7), e67010. doi:10.1371/journal.pone.0067010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bell A, Lewandowski K, Myers R, Wooldridge D, Aarons E, Simpson A, et al. Genome sequence analysis of Ebola virus in clinical samples from three British healthcare workers, August 2014 to March 2015. Euro Surveill. 2015;20(20), pii=21131.

    Article  Google Scholar 

  7. Volz E, Pond S. Phylodynamic analysis of Ebola virus in the 2014 Sierra Leone epidemic. PLoS Curr. 2014;6. doi:10.1371/currents.outbreaks.6f7025f1271821d4c815385b08f5f80e.

  8. Rodrigue DC, Cameron DN, Puhr ND, Brenner FW, St Louis ME, Wachsmuth IK, et al. Comparison of plasmid profiles, phage types, and antimicrobial resistance patterns of Salmonella Enteritidis isolates in the United States. J Clin Microbiol. 1992;30(4):854–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boxrud D, Pederson-Gulrud K, Wotton J, Medus C, Lyszkowicz E, Besser J, et al. Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol. 2007;45(2):536–43. doi:10.1128/JCM.01595-06.

    Article  CAS  PubMed  Google Scholar 

  10. Clark CG, Kruk TM, Bryden L, Hirvi Y, Ahmed R, Rodgers FG. Subtyping of Salmonella enterica serotype Enteritidis strains by manual and automated PstI-SphI ribotyping. J Clin Microbiol. 2003;41(1):27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ridley AM, Threlfall EJ, Rowe B. Genotypic characterization of Salmonella Enteritidis phage types by plasmid analysis, ribotyping, and pulsed-field gel electrophoresis. J Clin Microbiol. 1998;36(8):2314–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liebana E, Clouting C, Garcia-Migura L, Clifton-Hadley FA, Lindsay E, Threlfall EJ, et al. Multiple genetic typing of Salmonella Enteritidis phage-types 4, 6, 7, 8 and 13a isolates from animals and humans in the UK. Vet Microbiol. 2004;100(3–4):189–95. doi:10.1016/j.vetmic.2004.01.020.

    Article  CAS  PubMed  Google Scholar 

  13. Desai M, Threlfall EJ, Stanley J. Fluorescent amplified-fragment length polymorphism subtyping of the Salmonella enterica serovar Enteritidis phage type 4 clone complex. J Clin Microbiol. 2001;39(1):201–6. doi:10.1128/JCM.39.1.201-206.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott F, Threlfall J, Stanley J, Arnold C. Fluorescent amplified fragment length polymorphism genotyping of Salmonella Enteritidis: a method suitable for rapid outbreak recognition. Clin Microbiol Infect. 2001;7(9):479–85.

    Article  CAS  PubMed  Google Scholar 

  15. Boxrud D, Monson T, Stiles T, Besser J. The role, challenges, and support of pulse net laboratories in detecting foodborne disease outbreaks. Public Health Rep. 2010;125 Suppl 2:57–62.

    PubMed  PubMed Central  Google Scholar 

  16. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV, Force CDCPT. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001;7(3):382–9. doi:10.3201/eid0703.010303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O’Connor KA, Cosgrove S, et al. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med. 2013;369(10):944–53. doi:10.1056/NEJMoa1215837.

    Article  CAS  PubMed  Google Scholar 

  18. Cavallaro E, Date K, Medus C, Meyer S, Miller B, Kim C, et al. Salmonella typhimurium infections associated with peanut products. N Engl J Med. 2011;365(7):601–10. doi:10.1056/NEJMoa1011208.

    Article  CAS  PubMed  Google Scholar 

  19. From the Centers for Disease Control and Prevention. Multistate outbreak of Escherichia coli O157:H7 infections associated with eating ground beef—United States, June–July 2002. JAMA. 2002;288(6):690–1.

    Article  Google Scholar 

  20. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 2015;16(1):114. doi:10.1186/s13059-015-0677-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bakker HC, Switt AI, Cummings CA, Hoelzer K, Degoricija L, Rodriguez-Rivera LD, et al. A whole-genome single nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl Environ Microbiol. 2011;77(24):8648–55. doi:10.1128/AEM.06538-11.

    Article  PubMed  Google Scholar 

  22. Lienau EK, Blazar JM, Wang C, Brown EW, Stones R, Musser S, et al. Phylogenomic analysis identifies gene gains that define Salmonella enterica subspecies I. PLoS One. 2013;8(10), e76821. doi:10.1371/journal.pone.0076821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, Keys CE, et al. Identification of a salmonellosis outbreak by means of molecular sequencing. N Engl J Med. 2011;364(10):981–2. doi:10.1056/NEJMc1100443.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T, et al. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. J Infect Dis. 2015;213(4):502–8. doi:10.1093/infdis/jiv297.

    Article  PubMed  Google Scholar 

  25. Fey PD, Iwen PC, Zentz EB, Briska AM, Henkhaus JK, Bryant KA, et al. Assessment of whole-genome mapping in a well-defined outbreak of Salmonella enterica serotype Saintpaul. J Clin Microbiol. 2012;50(9):3063–5. doi:10.1128/JCM.01320-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Angelo KM, Chu A, Anand M, Nguyen TA, Bottichio L, Wise M, et al. Outbreak of Salmonella Newport infections linked to cucumbers—United States, 2014. MMWR. 2015;64(6):144–7.

    PubMed  Google Scholar 

  27. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, et al. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerg Infect Dis. 2014;20(8):1306–14. doi:10.3201/eid2008.131399.

    Article  Google Scholar 

  28. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–10. doi:10.1128/JCM.03617-13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ, Medus C, Boxrud D. Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole genome sequencing SNP-based analysis for surveillance and outbreak detection. J Clin Microbiol. 2015;53(10):3334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerner-Smidt P, Kincaid J, Kubota K, Hise K, Hunter SB, Fair MA, et al. Molecular surveillance of Shiga toxigenic Escherichia coli O157 by PulseNet USA. J Food Prot. 2005;68(9):1926–31.

    Article  PubMed  Google Scholar 

  31. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13 Suppl 3:1–46. doi:10.1111/j.1469-0691.2007.01786.x.

    Article  PubMed  Google Scholar 

  32. Deng X, Shariat N, Driebe EM, Roe CC, Tolar B, Trees E, et al. Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol. 2015;53(1):212–8. doi:10.1128/JCM.02332-14.

    Article  PubMed  Google Scholar 

  33. Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT, Adak G, et al. Whole genome sequencing for national surveillance of Shiga toxin producing Escherichia coli O157. Clin Infect Dis. 2015;61(3):305–12. doi:10.1093/cid/civ318.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jenkins C, Dallman TJ, Launders N, Willis C, Byrne L, Jorgensen F, et al. Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl Environ Microbiol. 2015;81(12):3946–52. doi:10.1128/AEM.04188-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Underwood AP, Dallman T, Thomson NR, Williams M, Harker K, Perry N, et al. Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. J Clin Microbiol. 2013;51(1):232–7. doi:10.1128/JCM.01696-12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Byrne L, Fisher I, Peters T, Mather A, Thomson N, Rosner B, et al. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012. Euro Surveill. 2014;19(31):6–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashton PM, Peters T, Ameh L, McAleer R, Petrie S, Nair S, et al. Whole genome sequencing for the retrospective investigation of an outbreak of Salmonella Typhimurium DT 8. PLoS Curr. 2015;7. doi:10.1371/currents.outbreaks.2c05a47d292f376afc5a6fcdd8a7a3b6.

  38. Dallman TJ, Byrne L, Launders N, Glen K, Grant KA, Jenkins C. The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11. Epidemiol Infect. 2015;143(8):1672–80. doi:10.1017/S0950268814002696.

    Article  CAS  PubMed  Google Scholar 

  39. Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, et al. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics. 2010;11:120. doi:10.1186/1471-2164-11-120.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silk BJMB, Griffin PM, Gould LH, Tauxe RV, Crim SM, Jackson KA, Gerner-Smidt P, Herman KM, Henao OL. Listeri illnesses, deaths, and outbreaks—United States, 2009–2011. Morb Mortal Wkly Rep. 2013;62(22):448–52.

    Google Scholar 

  41. Barrett TJ, Gerner-Smidt P, Swaminathan B. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis. 2006;3(1):20–31. doi:10.1089/fpd.2006.3.20.

    Article  CAS  PubMed  Google Scholar 

  42. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Goering RV, Kock R, Grundmann H, Werner G, Friedrich AW, ESCMID Study Group for Epidemiological Markers (ESGEM). From theory to practice: molecular strain typing for the clinical and public health setting. Euro Surveill. 2013;18(4):20383.

    CAS  PubMed  Google Scholar 

  44. Rounds JM, Boxrud DJ, Jawahir SL, Smith KE. Dynamics of Escherichia coli O157:H7 outbreak detection and investigation, Minnesota 2000–2008. Epidemiol Infect. 2012;140(8):1430–8. doi:10.1017/S0950268811002330.

    Article  CAS  PubMed  Google Scholar 

  45. Rounds JM, Hedberg CW, Meyer S, Boxrud DJ, Smith KE. Salmonella enterica pulsed-field gel electrophoresis clusters, Minnesota, USA, 2001–2007. Emerg Infect Dis. 2010;16(11):1678–85. doi:10.3201/eid1611.100368.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Boxrud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boxrud, D., Wolfgang, W.J. (2017). The Use of Whole Genome Sequencing for Surveillance of Enteric Organisms by United States Public Health Laboratories. In: Deng, X., den Bakker, H., Hendriksen, R. (eds) Applied Genomics of Foodborne Pathogens. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-43751-4_3

Download citation

Publish with us

Policies and ethics