Skip to main content

Remote Sensing of Drought: Vegetation, Soil Moisture, and Data Assimilation

  • Chapter
  • First Online:
Book cover Remote Sensing of Hydrological Extremes

Abstract

Application of remote sensing is emerging for operational drought monitoring and early warning as it offers opportunities for assessing drought from different perspectives. This chapter provides an overview of the advances in monitoring different types of drought using satellite remote-sensing observations with an example on agricultural drought assessment over the continental U.S. While the main constraint in remote sensing of drought is attributed to limited duration of records, this can be overcome by merging the remote-sensing observations with model simulations through data assimilation. The application of data assimilation as a promising approach is described for drought monitoring over the Pacific Northwest US.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • AghaKouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC, Wardlow BD, Hain CR (2015) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53(2):452–480

    Article  Google Scholar 

  • Ahmadalipour A, Moradkhani H, Svoboda M (2016) Centennial drought outlook over the CONUS using NASA-NEX downscaled climate ensemble. Int J Climatol. doi:10.1002/joc.4859

  • Alemohammad SH, McLaughlin DB, Entekhabi D (2015) Quantifying precipitation uncertainty for land data assimilation applications. Mon Weather Rev 143(8):3276–3299

    Article  Google Scholar 

  • Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J Clim 24(8):2025–2044. doi:10.1175/2010JCLI3812.1

    Article  Google Scholar 

  • Anderson MC, Hain C, Otkin J, Zhan X, Mo K, Svoboda M, Wardlow B, Pimstein A (2013) An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US Drought Monitor classifications. J Hydrometeorol 14(4):1035–1056

    Article  Google Scholar 

  • Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought Innov Monit Approach 23

    Google Scholar 

  • Ashouri H, Hsu K-L, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Nelson BR, Prat OP (2015) PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96(1):69–83

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–173

    Article  Google Scholar 

  • Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121

    Article  Google Scholar 

  • Bojinski S, Verstraete M, Peterson TC, Richter C, Simmons A, Zemp M (2014) The concept of Essential Climate Variables in support of climate research, applications, and policy. Bull Am Meteorol Soc 95(9):1431–1443

    Article  Google Scholar 

  • Brocca L, Moramarco T, Melone F, Wagner W, Hasenauer S, Hahn S (2012) Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Trans Geosci Remote Sens 50(7):2542–2555. doi:10.1109/TGRS.2011.2177468

    Article  Google Scholar 

  • Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC (2008) The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci Remote Sens 45(1):16–46

    Article  Google Scholar 

  • Ceccato P, Flasse S, Grégoire J-M (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data: part 2. Validation and applications. Remote Sens Environ 82(2):198–207

    Article  Google Scholar 

  • Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sens Environ 82(2):188–197

    Article  Google Scholar 

  • Chen Y, Velicogna I, Famiglietti JS, Randerson JT (2013) Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J Geophys Res Biogeosci 118(2):495–504

    Article  Google Scholar 

  • Crosman ET, Horel JD (2009) MODIS-derived surface temperature of the Great Salt Lake. Remote Sens Environ 113(1):73–81

    Article  Google Scholar 

  • Crow WT, Kustas WP, Prueger JH (2008) Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens Environ 112(4):1268–1281. doi:10.1016/j.rse.2006.11.033

    Article  Google Scholar 

  • Dechant CM, Moradkhani H (2012) Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour Res 48(4):1–15. doi:10.1029/2011WR011011

    Article  Google Scholar 

  • DeChant CM, Moradkhani H (2014a) Toward a reliable prediction of seasonal forecast uncertainty: addressing model and initial condition uncertainty with ensemble data assimilation and sequential bayesian combination. J Hydrol 519:2967–2977

    Article  Google Scholar 

  • DeChant CM, Moradkhani H (2014b) Hydrologic prediction and uncertainty quantification, handbook of engineering hydrology, modeling, climate change and variability. CRC press, Taylor & Francis Group, Boca Raton, pp 387–414

    Book  Google Scholar 

  • DeChant CM, Moradkhani H (2015) Analyzing the sensitivity of drought recovery forecasts to land surface initial conditions. J Hydrol 526:89–100

    Article  Google Scholar 

  • Dong J, Walker JP, Houser PR, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res Atmos 112(D7):D07108

    Article  Google Scholar 

  • Donlon C, Berruti B, Buongiorno A, Ferreira M-H, Féménias P, Frerick J, Goryl P, Klein U, Laur H, Mavrocordatos C (2012) The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens Environ 120:37–57

    Article  Google Scholar 

  • Dozier J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ 28:9–22

    Article  Google Scholar 

  • Dozier J, Green RO, Nolin AW, Painter TH (2009) Interpretation of snow properties from imaging spectrometry. Remote Sens Environ 113:S25–S37

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, Neill PEO, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Article  Google Scholar 

  • Feng W, Zhong M, Lemoine J, Biancale R, Hsu H, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements. Water Resour Res 49(4):2110–2118

    Article  Google Scholar 

  • Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sens Environ 87(1):111–121

    Article  Google Scholar 

  • Ferraro RR (1997) Special sensor microwave imager derived global rainfall estimates for climatological applications. J Geophys Res Atmos 102(D14):16715–16735

    Article  Google Scholar 

  • Foster JL, Hall DK, Eylander JB, Riggs GA, Nghiem SV, Tedesco M, Kim E, Montesano PM, Kelly REJ, Casey KA (2011) A blended global snow product using visible, passive microwave and scatterometer satellite data. Int J Remote Sens 32(5):1371–1395

    Article  Google Scholar 

  • Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Ghulam A, Qin Q, Zhan Z (2007) Designing of the perpendicular drought index. Environ Geol 52(6):1045–1052

    Article  Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34(6):L06407

    Article  Google Scholar 

  • Guan B, Molotch NP, Waliser DE, Jepsen SM, Painter TH, Dozier J (2013) Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resour Res 49(8):5029–5046

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83(1):181–194

    Article  Google Scholar 

  • Hansen M, DeFries R, Townshend JRG, Sohlberg R (1981) UMD global land cover classification, 1 kilometer, 1.0. Department of Geography, University of Maryland, College Park, 1994: 1998

    Google Scholar 

  • Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18

    Article  Google Scholar 

  • Hong Y, Hsu K, Moradkhani H, Sorooshian S (2006) Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour Res 42(8):W08421

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95(5):701–722

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2015) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In: Algorithm theoretical basis document, version 4.1. NASA

    Google Scholar 

  • Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54

    Article  Google Scholar 

  • Imaoka K, Kachi M, Kasahara M, Ito N, Nakagawa K, Oki T (2010) Instrument performance and calibration of AMSR-E and AMSR2. Int Arch Photogramm Remote Sens Spat Inf Sci 38:13–16

    Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138

    Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5(3):487–503

    Article  Google Scholar 

  • Khajehei S (2015) A multivariate modeling approach for generating ensemble climatology forcing for hydrologic applications. Portland State University, Portland, OR

    Google Scholar 

  • Kidd C, Levizzani V, Laviola S (2011) Quantitative precipitation estimation from Earth observation satellites. In: Rainfall: state of the science. Wiley Online Library, p 127–158

    Google Scholar 

  • Kogan FN (1995) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100

    Article  Google Scholar 

  • Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78(4):621–636

    Article  Google Scholar 

  • Kongoli C, Romanov P, Ferraro R (2012) Snow cover monitoring from remote sensing satellites: possibilities for drought assessment. In: Remote sensing of drought: innovative monitoring approaches. p 359–386

    Google Scholar 

  • Kumar SV, Peters-Lidard CD, Mocko D, Reichle R, Liu Y, Arsenault KR, Xia Y, Ek M, Riggs G, Livneh B, Cosh M (2014) Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J Hydrometeorol 15(6):2446–2469. doi:10.1175/JHM-D-13-0132.1

    Article  Google Scholar 

  • Leavesley GH, Lichty RW, Thoutman BM, Saindon LG (1983) Precipitation-runoff modeling system: user’s manual. US Geological Survey, Colorado

    Google Scholar 

  • Lettenmaier DP, Alsdorf D, Dozier J, Huffman GJ, Pan M, Wood EF (2015) Inroads of remote sensing into hydrologic science during the WRR era. Water Resour Res 51(9):7309–7342. doi:10.1002/2015WR017616

    Article  Google Scholar 

  • Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner W, Van Dijk A, McCabe MF, Evans JP (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436

    Article  Google Scholar 

  • Liu YY, Dorigo WA, Parinussa RM, De Jeu RAM, Wagner W, McCabe MF, Evans JP, Van Dijk AIJM (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. doi:10.1016/j.rse.2012.03.014

    Article  Google Scholar 

  • Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL (2014) Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344(6183):516–519

    Article  Google Scholar 

  • Luo L, Wood EF (2007) Monitoring and predicting the 2007 U.S. drought. Geophys Res Lett 34(22):L22702. doi:10.1029/2007GL031673

    Article  Google Scholar 

  • Madadgar S, Moradkhani H, Garen D (2014) Towards improved post‐processing of hydrologic forecast ensembles. Hydrol Process 28(1):104–122

    Article  Google Scholar 

  • Mao Y, Nijssen B, Lettenmaier DP (2015) Is climate change implicated in the 2013–2014 California drought? A hydrologic perspective. Geophys Res Lett 42(8):2805–2813

    Article  Google Scholar 

  • Massari C, Brocca L, Tarpanelli A, Moramarco T (2015) Data assimilation of satellite soil moisture into rainfall-runoff modelling: a complex recipe? Remote Sens 7(9):11403–11433. doi:10.3390/rs70911403

    Article  Google Scholar 

  • McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th conference on applied climatology, American Meteorological Society, Anaheim, p 179–184

    Google Scholar 

  • McMullan KD, Brown MA, Martín-Neira M, Rits W, Ekholm S, Marti J, Lemanczyk J (2008) SMOS: the payload. IEEE Trans Geosci Remote Sens 46(3):594–605

    Article  Google Scholar 

  • McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric Syst 57(3):399–468

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1-2):202–216. doi:10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Molotch NP, Bales RC (2006) Comparison of ground‐based and airborne snow surface albedo parameterizations in an alpine watershed: impact on snowpack mass balance. Water Resour Res 42(5):W05410

    Google Scholar 

  • Moradkhani H (2008) Hydrologic remote sensing and land surface data assimilation. Sensors 8(5):2986–3004

    Article  Google Scholar 

  • Moradkhani H, Hsu K, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5):W05012

    Google Scholar 

  • Moradkhani H, Hsu K, Hong Y, Sorooshian S (2006) Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophys Res Lett 33(12). doi:10.1029/2006GL026855

  • Moradkhani H, DeChant CM, Sorooshian S (2012) Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method. Water Resour Res 48(12):W12520. doi:10.1029/2012WR012144

  • Moser CL, Tootle GA, Oubeidillah AA, Lakshmi V (2011) A comparison of SNOTEL and AMSR-E snow water equivalent data sets in western US watersheds. Int J Remote Sens 32(21):6611–6629

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800. doi:10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteorol Soc 94(1):83–98. doi:10.1175/BAMS-D-11-00213.1

    Article  Google Scholar 

  • Naumann G, Spinoni J, Vogt JV, Barbosa P (2015) Assessment of drought damages and their uncertainties in Europe. Environ Res Lett 10(12):124013

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Núñez M, Pfister S, Antón A, Muñoz P, Hellweg S, Koehler A, Rieradevall J (2013) Assessing the environmental impact of water consumption by energy crops grown in Spain. J Ind Ecol 17(1):90–102

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. US Department of Commerce, Weather Bureau Washington, DC

    Google Scholar 

  • Parrish MA, Moradkhani H, Dechant CM (2012) Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation. Water Resour Res 48:W03519. doi:10.1029/2011WR011116

    Article  Google Scholar 

  • Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Remote Sens 68(1):71–75

    Google Scholar 

  • Reager JT, Famiglietti JS (2009) Global terrestrial water storage capacity and flood potential using GRACE. Geophys Res Lett 36(23):L23402

    Article  Google Scholar 

  • Reager JT, Thomas AC, Sproles EA, Rodell M, Beaudoing HK, Li B, Famiglietti JS (2015) Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens 7(11):14663–14679

    Article  Google Scholar 

  • Reichle R, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130(1):103–114. doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2

    Article  Google Scholar 

  • Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44(3):W03423. doi:10.1029/2007WR006357

    Article  Google Scholar 

  • Rembold F, Meroni M, Rojas O (2015) Agricultural drought monitoring using space-derived vegetation and biophysical products: a global perspective. In: Thenkabail PS (ed) Remote sensing of water resources, disasters, and urban studies. CRC Press, Boca Raton, pp 349–365

    Google Scholar 

  • Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887

    Article  Google Scholar 

  • Rind D, Hansen J, Goldberg R, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res 95(D7):9983–10004

    Article  Google Scholar 

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1):245–256

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20):20504

    Article  Google Scholar 

  • Rojas O, Vrieling A, Rembold F (2011) Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens Environ 115(2):343–352

    Article  Google Scholar 

  • Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over North America with multispectral satellite data. J Appl Meteorol 39(11):1866–1880

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, MD

    Google Scholar 

  • Ryu D, Crow WT, Zhan X, Jackson TJ (2009) Correcting unintended perturbation biases in hydrologic data assimilation. J Hydrometeorol 10:734–750. doi:10.1175/2008JHM1038.1

    Article  Google Scholar 

  • Sahoo AK, Sheffield J, Pan M, Wood EF (2015) Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens Environ 159:181–193. doi:10.1016/j.rse.2014.11.032

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2):213–224

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3-4):125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wen F, Wood EF (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res D Atmos 109(24):1–19. doi:10.1029/2004JD005182

    Google Scholar 

  • Shen S, Leptoukh GG (2011) Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ Res Lett 6(4):45206

    Article  Google Scholar 

  • Shukla S, Steinemann AC, Lettenmaier DP (2011) Drought monitoring for Washington State: indicators and applications. J Hydrometeorol 12:66–83. doi:10.1175/2010JHM1307.1

    Article  Google Scholar 

  • Sima S, Ahmadalipour A, Tajrishy M (2013) Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ 136:374–385

    Article  Google Scholar 

  • Sorooshian S, Hsu K-L, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  • Sorooshian S, Hsu K, Coppola E, Tomassetti B, Verdecchia M, Visconti G (2008) Hydrological modelling and the water cycle: coupling the atmospheric and hydrological models. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83(8):1181–1190. http://dx.doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2

  • Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land‐atmosphere water balance. Geophys Res Lett 32(24):L24404

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. Eur Water 9–10:1–9

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Tucker CJ, Choudhury BJ (1987) Satellite remote sensing of drought conditions. Remote Sens Environ 23(2):243–251

    Article  Google Scholar 

  • Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys Res Lett 39(9):L09403

    Article  Google Scholar 

  • Velicogna I, Kimball JS, Kim Y (2015) Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia. Environ Res Lett 10(12):124024

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. doi:10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Wada Y (2013) Human and climate impacts on global water resources. Utrecht University, Utrecht

    Google Scholar 

  • Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S, Figa-Saldaña J, de Rosnay P, Jann A, Schneider S (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol Z 22(1):5–33

    Article  Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int J Remote Sens 25(1):61–72

    Article  Google Scholar 

  • Wang L, Qu JJ (2007) NMDI: a normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(20):L20405

    Article  Google Scholar 

  • Wang J, Price KP, Rich PM (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int J Remote Sens 22(18):3827–3844

    Article  Google Scholar 

  • Wang A, Lettenmaier DP, Sheffield J (2011) Soil moisture drought in China, 1950–2006. J Clim 24(13):3257–3271. doi:10.1175/2011JCLI3733.1

    Article  Google Scholar 

  • Weiying C, Qianguang X, Yongwei S (1994) Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens Environ 9(2):106–112

    Google Scholar 

  • Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115(3):908–922

    Article  Google Scholar 

  • Xia Y, Sheffield J, Ek MB, Dong J, Chaney N, Wei H, Meng J, Wood EF (2014) Evaluation of multi-model simulated soil moisture in NLDAS-2. J Hydrol 512:107–125. doi:10.1016/j.jhydrol.2014.02.027

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Yan H, Moradkhani H (2016) Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling. Adv Water Resour 94:364–378. doi:10.1016/j.advwatres.2016.06.002

    Article  Google Scholar 

  • Yan H, DeChant CM, Moradkhani H (2015) Improving soil moisture profile prediction with the particle filter-Markov chain Monte Carlo method. IEEE Trans Geosci Remote Sens 53(11):6134–6147

    Article  Google Scholar 

  • Yao Y, Liang S, Qin Q, Wang K (2010) Monitoring drought over the conterminous United States using MODIS and NCEP Reanalysis-2 data. J Appl Meteorol Climatol 49(8):1665–1680

    Article  Google Scholar 

  • Yin D, Roderick ML, Leech G, Sun F, Huang Y (2014) The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett 41(22):7891–7897

    Article  Google Scholar 

  • Yong B, Wang J, Ren L, You Y, Xie P, Hong Y (2016) Evaluating four multisatellite precipitation estimates over the Diaoyu Islands during Typhoon seasons. J Hydrometeorol 17(5):1623–1641

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548

    Article  Google Scholar 

  • Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23

    Article  Google Scholar 

  • Zhang D, Zhang Q, Werner AD, Liu X (2015a) GRACE-based hydrological drought evaluation of the Yangtze River Basin, China. J Hydrometeorol 17(3), 811–828

    Google Scholar 

  • Zhang Z, Chao BF, Chen J, Wilson CR (2015b) Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Glob Planet Chang 126:35–45

    Article  Google Scholar 

  • Zhang J, Mu Q, Huang J (2016) Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecol Indic 63:296–309

    Article  Google Scholar 

  • Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot J-L (2014) A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon river basins. J Hydrometeorol 15(2):581–592

    Article  Google Scholar 

Download references

Acknowledgment

Partial Financial supports for this work were provided by NOAA-MAPP program, grant NA140AR4310234 and National Science Foundation (NSF) (Grant No. CCF-1539605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Moradkhani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmadalipour, A., Moradkhani, H., Yan, H., Zarekarizi, M. (2017). Remote Sensing of Drought: Vegetation, Soil Moisture, and Data Assimilation. In: Lakshmi, V. (eds) Remote Sensing of Hydrological Extremes. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-43744-6_7

Download citation

Publish with us

Policies and ethics