Skip to main content

Multi-Sensor Remote Sensing of Drought from Space

  • Chapter
  • First Online:
Remote Sensing of Hydrological Extremes

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Drought monitoring is vital considering the immense costs of this natural hazard. The root cause for all types of drought (meteorological, agricultural, hydrological, and socio-economic) is sustained below average precipitation. Since regional precipitation variability depends on large-scale climatic and oceanic circulation patterns, it is necessary to study droughts from a global perspective which requires satellite observations. Satellite data allow comprehensive assessment of drought onset, development, and recovery through a multi-sensor multivariate monitoring of hydrological variables. However, there are major challenges in using satellite data, including consistency, reliability, uncertainty, and length of record that merit more in-depth research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke JO, Carleton AM (2002) Relations between soil moisture and satellite vegetation indices in the us corn belt. J hydrometeorol 3(4):395–405

    Article  Google Scholar 

  • Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • AghaKouchak A (2014) A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 united states drought. Hydrol Earth Syst Sci 18:2485–2492

    Article  Google Scholar 

  • AghaKouchak A (2015, A multivariate approach for persistence-based drought prediction: application to the 2010–2011 east Africa drought. J Hydrol 526:127–135. doi:10.1016/j.jhydrol.2014.09.063

    Article  Google Scholar 

  • AghaKouchak A, Mehran A (2013) Extended contingency table: performance metrics for satellite observations and climate model simulations. Water Resour Res 49:7144–7149. doi:10.1002/wrcr.20498

    Article  Google Scholar 

  • AghaKouchak A, Nakhjiri N (2012) A near real-time satellite-based global drought climate data record. Environ Res Lett 7(4):044,037. doi:10.1088/1748-9326/7/4/044037

    Article  Google Scholar 

  • AghaKouchak A, Behrangi A, Sorooshian S, Hsu K, Amitai E (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J Geophys Res-Atmos 116:D02,115

    Article  Google Scholar 

  • AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39(9):L09,406

    Article  Google Scholar 

  • Aghakouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41. doi: 10.1002/2014GL062308

    Google Scholar 

  • AghaKouchak A, Farahmand A, Melton F, Teixeira J, Anderson M, Wardlow B, Hain C (2015a) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53(2):452–480. doi:10.1002/2014RG000456

    Article  Google Scholar 

  • AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J (2015b) Recognize anthropogenic drought. Nature 524(7566):409–4011. doi:10.1038/524409a

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—model. J Irrig Drain Eng 133(4):380–394.

    Article  Google Scholar 

  • Ambaw GM (2013) Satellite based remote sensing of soil moisture for drought detection and monitoring in the horn of Africa, Ph.D. Thesis, Politecnico di Torino

    Google Scholar 

  • Anagnostou EN, Maggioni V, Nikolopoulos EI, Meskele T, Hossain F, Papadopoulos A (2010) Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans Geosci Remote Sens 48(4):1667–1683

    Article  Google Scholar 

  • Anderson M, Kustas W (2008) Thermal remote sensing of drought and evapotranspiration. Eos Trans Am Geophys Union 89(26):233

    Article  Google Scholar 

  • Anderson L, Malhi Y, Aragao L, Saatchi S (2008) Spatial patterns of the canopy stress during 2005 drought in Amazonia. In: 2007 I.E. international geoscience and remote sensing symposium, IGARSS 2007, pp 2294–2297

    Google Scholar 

  • Anderson M, Kustas W, Norman J, Hain C, Mecikalski J, Schultz L, Gonzalez-Dugo M, Cammalleri C, d’Urso G, Pimstein A, et al. (2011a) Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol Earth Syst Sci 15(1):223–239

    Google Scholar 

  • Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011b) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental united states. J Climate 24(8):2025–2044

    Article  Google Scholar 

  • Anderson M, Hain C, Wardlow B, Pimstein A, Mecikalski J, Kustas W (2012a) A thermal-based evaporative stress index for monitoring surface moisture depletion. In: Remote sensing of drought: innovative monitoring approaches. CRC, pp 145–167

    Google Scholar 

  • Anderson W, Zaitchik B, Hain C, Anderson M, Yilmaz M, Mecikalski J, Schultz L (2012b) Towards an integrated soil moisture drought monitor for east Africa. Hydrol Earth Syst Sci 16(8):2893–2913

    Article  Google Scholar 

  • Anderson MC, Cammalleri C, Hain CR, Otkin J, Zhan X, Kustas W (2013a) Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales. Procedia Environ Sci 19:47–56

    Article  Google Scholar 

  • Anderson MC, Hain C, Otkin J, Zhan X, Mo K, Svoboda M, Wardlow B, Pimstein A (2013b) An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with us drought monitor classifications. J Hydrometeorol 14(4):1035–1056

    Article  Google Scholar 

  • Andreadis KM, Lettenmaier D (2005) Assimilating passive microwave brightness temperature for snow water equivalent estimation. In: AMS annual meeting, 19th conference on hydrology

    Google Scholar 

  • Arkin PA, Joyce R, Janowiak JE (1994) The estimation of global monthly mean rainfall using infrared satellite data: the goes precipitation index (GPI). Remote Sens Rev 11(1–4):107–124

    Article  Google Scholar 

  • Ashouri H, Hsu K-L, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Nelson BR, Prat OP (2015) Persiann-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96(1):69–83

    Article  Google Scholar 

  • Asner GP, Alencar A (2010) Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol 187(3):569–578

    Article  Google Scholar 

  • Asrar G, Fuchs M, Kanemasu E, Hatfield J (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76(2):300–306

    Article  Google Scholar 

  • Asrar G, Myneni RB, Kanemasu ET (1989) Estimation of plant-canopy attributes from spectral reflectance measurements

    Google Scholar 

  • Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western United States. Water Resour Res 42(8)

    Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–17

    Article  Google Scholar 

  • Barrett E, Herschy R (1989) Opportunities for satellite remote sensing in hydrology and water management. Geocarto Int 4(2):11–18

    Article  Google Scholar 

  • Boken VK, Cracknell AP, Heathcote RL, et al. (2005) Monitoring and predicting agricultural drought: a global study. Oxford University Press, Cary

    Google Scholar 

  • Bolten JD, Crow WT, Zhan X, Jackson TJ, Reynolds CA (2010) Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J Sel Top Appl Earth Observations Remote Sens 3(1):57–66

    Article  Google Scholar 

  • Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC (2008) The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. Geosci Remote Sens. 45(1):16–46

    Article  Google Scholar 

  • Cashion J, Lakshmi V, Bosch D, Jackson TJ (2005) Microwave remote sensing of soil moisture: evaluation of the TRMM microwave imager (TMI) satellite for the little river watershed Tifton, Georgia. J Hydrol 307(1):242–253

    Article  Google Scholar 

  • Chappell A, Renzullo LJ, Raupach TH, Haylock M (2013) Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J Hydrol 493:105–114

    Article  Google Scholar 

  • Chen D, Huang J, Jackson TJ (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from modis near-and short-wave infrared bands. Remote Sens Environ. 98(2):225–236

    Article  Google Scholar 

  • Chen J, Wilson C, Tapley B, Yang Z, Niu G (2009) 2005 drought event in the Amazon river basin as measured by grace and estimated by climate models. J Geophys Res 114(B5):B05,404

    Google Scholar 

  • Choi M, Jacobs J, Anderson M, Bosch D (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476(7):265–273

    Google Scholar 

  • Dalezios N, Blanta A, Spyropoulos N (2012) Assessment of remotely sensed drought features in vulnerable agriculture. Nat Hazards Earth Syst Sci 12(10):3139–3150

    Article  Google Scholar 

  • Damberg L, AghaKouchak A (2014) Global trends and patterns of drought from space. Theor Appl Climatol 117(3):441–448. doi:10.1007/s00704-013-1019-5

    Article  Google Scholar 

  • Deering D, Rouse J (1975) Measuring’forage production’ of grazing units from landsat mss data. In: 10 th international symposium on remote sensing of environment, Ann Arbor, Mich, pp 1169–1178

    Google Scholar 

  • Di L, Rundquist DC, Han L (1994) Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int J Remote Sens 15(10):2121–2136

    Article  Google Scholar 

  • D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res Biogeosci 112(G4):2005–2012

    Google Scholar 

  • Dong J, Walker JP, Houser PR, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res Atmos 112(D7) (1984–2012)

    Google Scholar 

  • Donohue RJ, McVICAR T, Roderick ML (2009) Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob Chang Biol 15(4):1025–1039

    Article  Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386(1):186–197

    Article  Google Scholar 

  • Dorigo W, Scipal K, Parinussa R, Liu Y, Wagner W, De Jeu R, Naeimi V (2010) Error characterisation of global active and passive microwave soil moisture datasets. Hydrol Earth Syst Sci 14(12):2605–2616

    Google Scholar 

  • Dozier J, Green RO, Nolin AW, Painter TH (2009) Interpretation of snow properties from imaging spectrometry. Remote Sens Environ 113:S25–S37

    Article  Google Scholar 

  • Durand M, Kim EJ, Margulis SA (2008) Quantifying uncertainty in modeling snow microwave radiance for a mountain snowpack at the point-scale, including stratigraphic effects. IEEE Trans Geosci Remote Sens 46(6):1753–1767

    Article  Google Scholar 

  • Easterling D (2013) Global data sets for analysis of climate extremes. In: Extremes in a changing climate. Springer, Berlin. doi:10.1007/978-94-007-4479-0 1

    Book  Google Scholar 

  • Ebert E, Janowiak J, Kidd C (2007) Comparison of near real time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soci 88:47–64

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, Houser P, Spencer M, Doiron T, Kim Y, Smith J, Girard R, Belair S, Crow W, et al. (2004) The hydrosphere state (hydros) satellite mission: an earth system pathfinder for global mapping of soil moisture and land freeze/thaw, IEEE Trans Geosci Remote Sens 42(10):2184–2195

    Google Scholar 

  • Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, et al. (2010a) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716

    Google Scholar 

  • Entekhabi D, Reichle RH, Koster RD, Crow WT (2010b) Performance metrics for soil moisture retrievals and application requirements. J Hydrometeorol 11(3):832–840

    Article  Google Scholar 

  • Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301

    Article  Google Scholar 

  • Farahmand A, AghaKouchak A (2015) A generalized framework for deriving nonparametric standardized drought indicators. Adv Water Resour 76:140–145

    Article  Google Scholar 

  • Farahmand A, Teixeira J, AghaKouchak A (2015) A vantage from space can detect earlier drought onset: an approach using relative humidity. Sci Rep 5:8553. doi:10.1038/srep07093

    Article  Google Scholar 

  • Farrar T, Nicholson S, Lare A (1994) The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. ii. NDVI response to soil moisture. Remote Sens Environ 50(2):121–133

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens Environ 101(2):212–229

    Article  Google Scholar 

  • Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J, Powell H (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94(2):187–203

    Article  Google Scholar 

  • Foster JL, Hall DK, Eylander JB, Riggs GA, Nghiem SV, Tedesco M, Kim E, Montesano PM, Kelly RE, Casey KA, et al. (2011) A blended global snow product using visible, passive microwave and scatterometer satellite data. Int J Remote Sens 32(5):1371–1395

    Google Scholar 

  • Funk C, Budde ME (2009) Phenologically-tuned modis NDVI-based production anomaly estimates for Zimbabwe. Remote Sens Environ 113(1):115–125

    Article  Google Scholar 

  • Gallagher J, Biscoe P, Hunter B (1976) Effects of drought on grain growth. Nature 264:541–542

    Article  Google Scholar 

  • Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Gebremichael M (2010) Framework for satellite rainfall product evaluation. Geophysical monograph series, vol 191. Wiley Online Library, pp 265–275

    Google Scholar 

  • Ghulam A, Qin Q, Zhan Z (2007a) Designing of the perpendicular drought index. Environ Geol 52(6):1045–1052

    Article  Google Scholar 

  • Ghulam A, Qin Q, Teyip T, Li Z-L (2007b) Modified perpendicular drought index (MPDI): a real-time drought monitoring method. ISPRS J Photogramm Remote Sens 62(2):150–164

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  Google Scholar 

  • Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theor Appl Climatol 119:679–688. doi:10.1007/s00704-014-1139-6

    Article  Google Scholar 

  • Goodison BE (1989) Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. In: 1989 international geoscience and remote sensing symposium, 1989. IGARSS’89. 12th Canadian symposium on remote sensing, vol 3. IEEE, pp 1243–1246

    Google Scholar 

  • Grasso VF, Singh A (2011) Early warning systems: state-of-art analysis and future directions, United Nations Environment Programme (UNEP)

    Google Scholar 

  • Grody NC, Basist AN (1996) Global identification of snowcover using ssm/i measurements. IEEE Trans Geosci Remote Sens 34(1):237–249

    Article  Google Scholar 

  • Gruhier C, De Rosnay P, Hasenauer S, Holmes TR, De Jeu RA, Kerr YH, Mougin E, Njoku E, Timouk F, Wagner W, et al. (2010) Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site, HAL 00463919

    Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of modis NDVI and NDWI for grassland drought assessment over the central great plains of the united states. Geophys Res Lett 34(6)

    Google Scholar 

  • Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP (2008) Evaluation of modis NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys Rese Lett 35(22)

    Google Scholar 

  • Guan B, Molotch NP, Waliser DE, Jepsen SM, Painter TH, Dozier J (2013) Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations. Water Resour Res 49(8):5029–5046

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) Modis snow-cover products. Remote Sens Environ 83(1):181–194

    Article  Google Scholar 

  • Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Res 57:12–18

    Article  Google Scholar 

  • Hao Z, AghaKouchak A (2014) A nonparametric multivariate multi-index drought monitoring framework. J Hydrometeorol 15:89–101

    Article  Google Scholar 

  • Hao Z, Singh VP (2015) Drought characterization from a multivariate perspective: a review. J Hydrol 527:668–678

    Article  Google Scholar 

  • Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A (2014) Global integrated drought monitoring and prediction system. Sci Data 1:140,001. doi:10.1038/sdata.2014.1

    Article  Google Scholar 

  • Hatfield J, Asrar G, Kanemasu E (1984) Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens Environ 14(1):65–75

    Article  Google Scholar 

  • Hayes M, Svoboda M, Wilhite D, Vanyarkho O (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteor. Soc. 80:429–438

    Article  Google Scholar 

  • He M, Hogue T, Margulis S, Franz K (2012) An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions. Hydrol Earth Syst Sci 16(3):815–831

    Article  Google Scholar 

  • Heumann BW (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Progress Phys Geogr 35(1):87–108

    Article  Google Scholar 

  • Hidalgo HG (2004) Climate precursors of multidecadal drought variability in the western united states. Water Resour Res 40(12):W12,504

    Article  Google Scholar 

  • Hielkema J, Prince S, Astle W (1986) Rainfall and vegetation monitoring in the savanna zone of the Democratic Republic of Sudan using the NOAA advanced very high resolution radiometer. Int J Remote Sens 7(11):1499–1513

    Article  Google Scholar 

  • Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 49(5):1044–1051

    Article  Google Scholar 

  • Hobbins MT, Dai A, Roderick ML, Farquhar GD (2008) Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys Res Lett 35(12)

    Google Scholar 

  • Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299(5607):691–694

    Article  Google Scholar 

  • Hoerling M., et al. (2013) An interpretation of the origins of the 2012 central great plains drought. Technical Report, Assessment Report, National Oceanic and Atmospheric Administration, Drought Task Force

    Google Scholar 

  • Hong Y, Hsu K, Gao X, Sorooshian S (2004) Precipitation estimation from remotely sensed imagery using artificial neural network-cloud classification system. J Appl Meteorol Climatol 43:1834–1853

    Article  Google Scholar 

  • Hossain F, Anagnostou E (2005) Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv Water Resour 28(12):1336–1350

    Article  Google Scholar 

  • Hossain F, Huffman G (2008) Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J Hydrometeorol 9(3):563–575

    Article  Google Scholar 

  • Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (grace) terrestrial water storage observations. Water Resour Res 48(7)

    Google Scholar 

  • Hsu K, Gao X, Sorooshian S, Gupta H (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG, (2002) Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens Environ 83(1):195–213

    Article  Google Scholar 

  • Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Stocker E, Wolff D (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J hydrometeorol 8:38–55

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2013) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In: Algorithm Theoretical Basis Document, Version 4.1, NASA

    Google Scholar 

  • Hunt Jr, ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54

    Google Scholar 

  • Idso S, Jackson R, Pinter P, Reginato R, Hatfield J (1981) Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol 24(1):45–55

    Article  Google Scholar 

  • Jackson TJ (1993) III. measuring surface soil moisture using passive microwave remote sensing. Hydrol Process 7(2):139–152

    Article  Google Scholar 

  • Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484

    Article  Google Scholar 

  • Jackson RD, Idso S, Reginato R, Pinter Jr P (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138

    Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt E (2004) Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92(4):475–482

    Article  Google Scholar 

  • Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98

    Article  Google Scholar 

  • Joyce R, Arkin PA (1997) Improved estimates of tropical and subtropical precipitation using the goes precipitation index. J Atmos Ocean Technol 14(5):997–1011

    Article  Google Scholar 

  • Joyce R, Janowiak J, Arkin P, Xie P (2004) Cmorph: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  • Justice CO, Román MO, Csiszar I, Vermote EF, Wolfe RE, Hook SJ, Friedl M, Wang Z, Schaaf CB, Miura T, et al. (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. J Geophys Res Atmos 118(17):9753–9765

    Google Scholar 

  • Kao S, Govindaraju R (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1–2):121–134

    Article  Google Scholar 

  • Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Climate 23(3):618–633

    Article  Google Scholar 

  • Kelly RE, Chang AT, Tsang L, Foster JL (2003) A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans Geosci Remote Sens 41(2):230–242

    Article  Google Scholar 

  • Keyantash J, Dracup J (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res 40(9):W09,304. doi:10.1029/2003WR002610

    Article  Google Scholar 

  • Kidd C (2001) Satellite rainfall climatology: a review. Int J Climatol 21:1041–1066

    Article  Google Scholar 

  • Kim J, Hogue TS (2012) Improving spatial soil moisture representation through integration of AMSR-E and modis products. IEEE Trans Geosci Remote Sens 50(2):446–460

    Article  Google Scholar 

  • Kogan F (1995) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100

    Article  Google Scholar 

  • Kogan F, Sullivan J (1993) Development of global drought-watch system using NOAA/AVHRR data. Adv Space Res 13(5):219–222

    Article  Google Scholar 

  • Kongoli C, Dean CA, Helfrich SR, Ferraro RR (2007) Evaluating the potential of a blended passive microwave-interactive multi-sensor product for improved mapping of snow cover and estimations of snow water equivalent. Hydrol Process 21(12):1597–1607

    Article  Google Scholar 

  • Kongoli C, Romanov P, Ferraro R (2012) Snow cover monitoring from remote sensing satellites. In: Remote sensing of drought: innovative monitoring approaches. CRC, Boca Raton, pp 359–386

    Google Scholar 

  • Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model: 1. model structure. J Geophys Res Atmos (1984–2012) 105(D20):24,809–24,822

    Article  Google Scholar 

  • Krajewski WF, Anderson MC, Eichinger WE, Entekhabi D, Hornbuckle BK, Houser PR, Katul GG, Kustas WP, Norman JM, Peters-Lidard C, et al. (2006) A remote sensing observatory for hydrologic sciences: a genesis for scaling to continental hydrology. Water Resour Res 42(7)

    Google Scholar 

  • Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Takayabu YN, Ushio T, Nakagawa K, Iwanami K, et al. (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. IEEE Trans Geosci Remote Sens 45(7):2259–2275

    Google Scholar 

  • Kummerow C, Olson WS, Giglio L (1996) A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans Geosci Remote Sens 34(5):1213–1232

    Article  Google Scholar 

  • Kummerow C, Hong Y, Olson W, Yang S, Adler R, McCollum J, Ferraro R, Petty G, Shin D-B, Wilheit T (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40(11):1801–1820

    Article  Google Scholar 

  • Kunzi KF, Patil S, Rott H (1982) Snow-cover parameters retrieved from nimbus-7 scanning multichannel microwave radiometer (SMMR) data. IEEE Trans Geosci Remote Sens GE-20(4):452–467

    Article  Google Scholar 

  • Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45(4)

    Google Scholar 

  • Levizzani V (2008) Satellite clouds and precipitation observations for meteorology and climate. In: Sorooshian S, Hsu K-L, Coppola E, Tomassetti B, Verdecchia M, Visconti G (eds) Hydrological modeling and the water cycle. Springer, Berlin, pp 49–68

    Chapter  Google Scholar 

  • Levizzani V, Bauer P, Turk F (2007) Measurement of Precipitation from space: EURAINSAT and future. Springer, Dordrecht

    Book  Google Scholar 

  • Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of grace terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446:103–115

    Article  Google Scholar 

  • Liang T, Zhang X, Xie H, Wu C, Feng Q, Huang X, Chen Q (2008) Toward improved daily snow cover mapping with advanced combination of modis and AMSR-E measurements. Remote Sens Environ 112(10):3750–3761

    Article  Google Scholar 

  • Liu Y, Parinussa R, Dorigo W, Jeu RD, Wagner W, Dijk AV, McCabe M, Evans J (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436

    Article  Google Scholar 

  • Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y (2016) Agricultural drought monitoring: progress, challenges, and prospects. J Geogr Sci 26(6):750–767

    Article  Google Scholar 

  • Long D, Scanlon BR, Longuevergne L, Sun A-Y, Fernando DN, Himanshu S (2013) Grace satellites monitor large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40(13):3395–3401

    Google Scholar 

  • Lorenz C, Tourian MJ, Devaraju B, Sneeuw N, Kunstmann H (2015) Basin-scale runoff prediction: An ensemble Kalman filter framework based on global hydrometeorological data sets. Water Resour Res 51(10):8450–8475

    Article  Google Scholar 

  • Lu H, Raupach MR, McVicar TR, Barrett DJ (2003) Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens Environ 86(1):1–18

    Article  Google Scholar 

  • Maggioni V, Sapiano MR, Adler RF (2016) Estimating uncertainties in high-resolution satellite precipitation products: systematic or random error? J Hydrometeorol 17(4):1119–1129

    Article  Google Scholar 

  • Margulis SA, Wood EF, Troch PA (2006) The terrestrial water cycle: modeling and data assimilation across catchment scales. J Hydrometeorol 7(3):309–311

    Article  Google Scholar 

  • McCabe GJ, Clark MP (2005) Trends and variability in snowmelt runoff in the western united states. J Hydrometeorol 6(4):476–482

    Article  Google Scholar 

  • McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: In proceedings of the 8th conference of applied climatology, 17–22 January 1993, Anaheim, CA. American Meteorological Society, pp 179–184

    Google Scholar 

  • McVicar TR, Jupp DL (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric Syst 57(3):399–468

    Article  Google Scholar 

  • McVicar TR, Jupp DL (1999) Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models. Agric Forest Meteorol 96(4):219–238

    Article  Google Scholar 

  • McVicar TR, Jupp DL (2002) Using covariates to spatially interpolate moisture availability in the Murray–darling basin: a novel use of remotely sensed data. Remote Sens Environ 79(2):199–212

    Article  Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, et al. (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205

    Google Scholar 

  • Mehran A, AghaKouchak A (2014) Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol Process 28:2262–2270. doi:10.1002/hyp.9779

    Article  Google Scholar 

  • Mehran A, Mazdiyasni O, AghaKouchak A (2015) A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand. J Geophys Res 121. doi:10.1002/2015JD023147

    Google Scholar 

  • Mo KC (2011) Drought onset and recovery over the United States. J Geophys Res Atmos 116:D20,106. doi:10.1029/2011JD016168

    Article  Google Scholar 

  • Molotch NP, Bales RC (2006) Comparison of ground-based and airborne snow surface albedo parameterizations in an alpine watershed: impact on snowpack mass balance. Water Resour Res 42(5)

    Google Scholar 

  • Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv Water Resour 31(11):1503–1514

    Article  Google Scholar 

  • Moran M, Clarke T, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263

    Article  Google Scholar 

  • Morgan J (1989) Satellite remote sensing in meteorology and climatology-status, perspectives and challenges. In: Deutsche Meteorologen-Tagung ueber Atmosphaere, Ozeane, Kontinente, Kiel, Federal Republic of Germany, May 16–19. Annalen der Meteorologie, vol 26, pp 39–43

    Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on modis and global meteorology data. Remote Sens Environ 111(4):519–536

    Article  Google Scholar 

  • Mu Q, Jones LA, Kimball JS, McDonald KC, Running SW (2009) Satellite assessment of land surface evapotranspiration for the pan-arctic domain. Water Resour Res 45(9)

    Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a modis global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800

    Article  Google Scholar 

  • Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98

    Article  Google Scholar 

  • NASA (2010) 2010 science plan for NASA’s science mission directorate. Technical Report, National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Nemani R, Hashimoto H, Votava P, Melton F, Wang W, Michaelis A, Mutch L, Milesi C, Hiatt S, White M (2009) Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (tops). Remote Sens Environ 113(7):1497–1509

    Article  Google Scholar 

  • Nguyen P, Thorstensen A, Sorooshian S, Hsu K, AghaKouchak A (2015) Flood forecasting and inundation mapping using HiResFlood-UCI and near real-time satellite precipitation data: the 2008 Iowa flood. J Hydrometeorol (16):1171–1183

    Article  Google Scholar 

  • Nicholson SE, Tucker CJ, Ba M (1998) Desertification, drought, and surface vegetation: an example from the west African Sahel. Bull Am Meteorol Soc 79(5):815–829

    Article  Google Scholar 

  • Njoku EG, Entekhabi D (1996) Passive microwave remote sensing of soil moisture. J Hydrol 184(1):101–129

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Otkin JA, Anderson MC, Hain C, Svoboda M (2014) Examining the relationship between drought development and rapid changes in the evaporative stress index. J Hydrometeorol 15(3):938–956

    Google Scholar 

  • Painter TH, Seidel FC, Bryant AC, McKenzie Skiles S, Rittger K (2013) Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J Geophys Res Atmos 118(17):9511–9523

    Google Scholar 

  • Palmer W (1965) Meteorological drought. Technical Report, Weather Bureau Res. Paper 45, U.S. Dept. of Commerce, 58 pp

    Google Scholar 

  • Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21(4)

    Google Scholar 

  • Palmer WC, Havens AV (1958) A graphical technique for determining evapotranspiration by the Thornthwaite method. Mon Weather Rev 86(4):123–128

    Article  Google Scholar 

  • Paridal BR, Collado WB, Borah R, Hazarika MK, Sarnarakoon L (2008) Detecting drought-prone areas of rice agriculture using a modis-derived soil moisture index. GISci Remote Sens 45(1):109–129

    Article  Google Scholar 

  • Park J-S, Kim K-T, Choi Y-S (2008) Application of vegetation condition index and standardized vegetation index for assessment of spring drought in south Korea. In: IEEE international geoscience and remote sensing symposium, 2008 (IGARSS 2008), vol 3. IEEE, pp III–774

    Google Scholar 

  • Payero J, Neale C, Wright J (2004) Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Appl Eng Agric 20:385–393

    Article  Google Scholar 

  • Perry CR, Lautenschlager LF (1984) Functional equivalence of spectral vegetation indices. Remote Sens Environ 14(1):169–182

    Article  Google Scholar 

  • Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Remote Sens 68(1):71–75

    Google Scholar 

  • Pinker RT, Sun D, Hung M-P, Li C, Basara JB (2009) Evaluation of satellite estimates of land surface temperature from GOES over the United States. J Appl Meteorol Climatol 48(1):167–180

    Article  Google Scholar 

  • Prakash S, Mitra AK, AghaKouchak A, Pai D (2015) Error characterization of TRMM multisatellite precipitation analysis (TMPA-3b42) products over India for different seasons. J Hydrol 529:1302–1312

    Article  Google Scholar 

  • Prakash S, Mitra AK, Pai D, AghaKouchak A (2016a) From TRMM to GPM: how well can heavy rainfall be detected from space? Adv Water Resour 88:1–7

    Article  Google Scholar 

  • Prakash S, Mitra AK, AghaKouchak A, Liu Z, Norouzi H, Pai D (2016b) A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J Hydrol. doi:10.1016/j.jhydrol.2016.01.029

    Google Scholar 

  • Price JC (1982) Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data. IEEE Trans Geosci Remote Sens GE-20(3):286–292

    Article  Google Scholar 

  • Prince SD, Colstoun D, Brown E, Kravitz L (1998) Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob Chang Biol 4(4):359–374

    Article  Google Scholar 

  • Qin Q, Jin C, Zhang N, Yang X (2010) An two-dimensional spectral space based model for drought monitoring and its re-examination. In: 2010 I.E. international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3869–3872

    Google Scholar 

  • Rajsekhar D, Singh VP, Mishra AK (2014) Multivariate drought index: an information theory based approach for integrated drought assessment. J Hydrol. doi:10.1016/j.jhydrol.2014.11.031

    Google Scholar 

  • Rasmusson EM, Wallace JM, et al. (1983) Meteorological aspects of the el nino/southern oscillation. Science 222(4629):1195–1202

    Google Scholar 

  • Reager JT, Thomas AC, Sproles EA, Rodell M, Beaudoing HK, Li B, Famiglietti JS (2015) Assimilation of grace terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens 7(11):14,663. doi:10.3390/rs71114663

    Article  Google Scholar 

  • Reichle RH, Koster RD, Dong J, Berg AA (2004) Global soil moisture from satellite observations, land surface models, and ground data: implications for data assimilation. J Hydrometeorol 5(3):430–442

    Article  Google Scholar 

  • Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887

    Article  Google Scholar 

  • Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in southern Africa. Int J Remote Sens 19(15):2907–2920

    Article  Google Scholar 

  • Rodell M (2012) Satellite gravimetry applied to drought monitoring. In: Remote Sensing of Drought: Innovative Monitoring Approaches. CRC, p 261

    Google Scholar 

  • Rodell M, Famiglietti J (2002) The potential for satellite-based monitoring of groundwater storage changes using grace: the high plains aquifer, central US. J Hydrol 263(1):245–256

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi river basin (USA) using grace. Hydrogeol J 15(1):159–166

    Article  Google Scholar 

  • Roderick ML, Noble IR, Cridland SW (1999) Estimating woody and herbaceous vegetation cover from time series satellite observations. Glob Ecol Biogeogr 8(6):501–508

    Article  Google Scholar 

  • Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over north America with multispectral satellite data. J Appl Meteorol 39(11):1866–1880

    Article  Google Scholar 

  • Rott H, Yueh SH, Cline DW, Duguay C, Essery R, Haas C, Heliere F, Kern M, Macelloni G, Malnes E, et al. (2010) Cold regions hydrology high-resolution observatory for snow and cold land processes. Proc IEEE 98(5):752–765

    Google Scholar 

  • Rouse J, Haas R, Schell J, Deering D, Harlan J (1974) Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Texas A & M University, Remote Sensing Center, College Station

    Google Scholar 

  • Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:(4)1090–1101

    Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560

    Article  Google Scholar 

  • Schanda E, Matzler C, Kunzi K (1983) Microwave remote sensing of snow cover. Int J Remote Sens 4(1):149–158

    Article  Google Scholar 

  • Senay GB, Bohms S, Verdin JP (2012) Remote sensing of evapotranspiration for operational drought monitoring using principles of water and energy balance. In: Wardlow BD, Anderson MC, Verdin JP (eds) Remote sensing of drought: innovative monitoring approaches. CRC, pp 123–144

    Google Scholar 

  • Sheffield J, Goteti G, Wen F, Wood E (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos 109:D24

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood E (2006) Development of a 50-yr, high resolution global dataset of meteorological forcings for land surface modeling. J. Climate 13:3088–3111

    Article  Google Scholar 

  • Sheffield J, Wood E, Roderick M (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438

    Article  Google Scholar 

  • Shen HW, Tabios GQ (1996) Modeling of precipitation-based drought characteristics over California. Centers for Water and Wildland Resources, Davis

    Google Scholar 

  • Silleos NG, Alexandridis TK, Gitas IZ, Perakis K (2006) Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int 21(4):21–28

    Article  Google Scholar 

  • Simpson J, Stitt J, Sienko M (1998) Improved estimates of the areal extent of snow cover from AVHRR data. J Hydrol 204(1):1–23

    Article  Google Scholar 

  • Sorooshian S, Hsu K, Gao X, Gupta H, Imam B, Braithwaite D (2000) Evolution of the Persiann system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  • Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bull Am Meteorol Soc 92(10):1353–1357

    Article  Google Scholar 

  • Sorooshian S, Nguyen P, Sellars S, Braithwaite D, AghaKouchak A, Hsu K (2014) Satellite-based remote sensing estimation of precipitation for early warning systems. Extreme Nat Hazards Disaster Risks Soc Implications 1:99–112

    Article  Google Scholar 

  • Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83(8):1181–1190

    Article  Google Scholar 

  • Tadesse T, Brown J, Hayes M (2005) A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the US central plains. ISPRS J Photogramm Remote Sens 59(4):244–253; 30th international symposium on remote sensing of environment, Honolulu, HI, 2003

    Google Scholar 

  • Takada M, Mishima Y, Natsume S (2009) Estimation of surface soil properties in peatland using ALOS/PALSAR. Landsc Ecol Eng 5(1):45–58

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9)

    Google Scholar 

  • Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A grace-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41(5):1537–1545

    Article  Google Scholar 

  • Tian Y, Peters-Lidard C, Eylander J, Joyce R, Huffman G, Adler R, Hsu K, Turk F, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101

    Article  Google Scholar 

  • Tourian M, Elmi O, Chen Q, Devaraju B, Roohi S, Sneeuw N (2015) A spaceborne multisensor approach to monitor the desiccation of lake Urmia in Iran. Remote Sens Environ 156:349–360

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. Eur Water 9(10):3–11

    Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Tucker CJ, Choudhury BJ (1987) Satellite remote sensing of drought conditions. Remote Sens Environ 23(2):243–251

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int J Remote Sens 26(20):4485–4498

    Google Scholar 

  • Turk FJ, Rohaly GD, Hawkins J, Smith EA, Marzano FS, Mugnai A, Levizzani V (1999) Meteorological applications of precipitation estimation from combined ssm/i, TRMM and infrared geostationary satellite data. In: Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere. VSP International Science Publishers, pp 353–363

    Google Scholar 

  • UNESCO (1979) Map of the world distribution of arid regions. Technical Report, The United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, France

    Google Scholar 

  • van Dijk A, Renzullo L, Rodell M (2011) Use of gravity recovery and climate experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system. Water Resour Res 47(11)

    Google Scholar 

  • van Dijk AI, Beck HE, Crosbie RS, Jeu RA, Liu YY, Podger GM, Timbal B, Viney NR (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057

    Article  Google Scholar 

  • Van Loon AF (2015) Hydrological drought explained. Wiley Interdiscip Rev Water 2(4):359–392

    Google Scholar 

  • Van Loon AF, Gleeson T, Clark J, Van Dijk AI, Stahl K, Hannaford J, Di Baldassarre G, Teuling AJ, Tallaksen LM, Uijlenhoet R, et al. (2016) Drought in the anthropocene. Nat Geosci 9(2):89–91

    Google Scholar 

  • Vargas M, Miura T, Shabanov N, Kato A (2013) An initial assessment of Suomi NPP VIIRS vegetation index EDR. J Geophys Res Atmos 118(22):12–301

    Article  Google Scholar 

  • Wagner W, Noll J, Borgeaud M, Rott H (1999) Monitoring soil moisture over the Canadian prairies with the ERS scatterometer. IEEE Trans Geosci Remote Sens 37(1):206–216

    Article  Google Scholar 

  • Wagner W, Dorigo W, de Jeu R, Fernandez D, Benveniste J, Haas E, Ertl M (2012) Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. In: XXII ISPRS congress, Melbourne, Australia

    Google Scholar 

  • Wan Z, Wang P, Li X (2004) Using modis land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains, USA. Int J Remote Sens 25(1):61–72

    Article  Google Scholar 

  • Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50(2)

    Google Scholar 

  • Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(20)

    Google Scholar 

  • Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci Chin 3(2):237–247

    Article  Google Scholar 

  • Wang A, Bohn TJ, Mahanama SP, Koster RD, Lettenmaier DP (2009) Multimodel ensemble reconstruction of drought over the continental United States. J Climate 22(10):2694–2712

    Article  Google Scholar 

  • Wang J, Price K, Rich P (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central great plains. Int J Remote Sens 22(18):3827–3844

    Article  Google Scholar 

  • Wardlow B, Anderson M, Verdin J (2012) Remote sensing of drought. CRC, Boca Raton

    Google Scholar 

  • Wegren SK (2011) Food security and Russia’s 2010 drought. Eurasian Geogr Econ 52(1):140–156

    Article  Google Scholar 

  • Welsch C, Swenson H, Cota SA, DeLuccia F, Haas JM, Schueler C, Durham RM, Clement JE, Ardanuy PE (2001) VIIRS (visible infrared imager radiometer suite): a next-generation operational environmental sensor for NPOESS. In: IEEE 2001 international geoscience and remote sensing symposium, 2001. IGARSS’01, vol. 3. IEEE, pp 1020–1022

    Google Scholar 

  • Werick W, Willeke G, Guttman N, Hosking J, Wallis J (1994) National drought atlas developed. Eos Trans Am Geophys Union 75:89

    Article  Google Scholar 

  • Whitcraft AK, Becker-Reshef I, Justice CO (2015) A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sens 7(2):1461–1481

    Article  Google Scholar 

  • Wiegand C, Richardson A, Escobar D, Gerbermann A (1991) Vegetation indices in crop assessments. Remote Sens Environ 35(2):105–119

    Article  Google Scholar 

  • Wiesnet D (1981) Winter snow drought. Eos Trans Am Geophys Union 62(14):137–137

    Article  Google Scholar 

  • Wilhite DA (2005) Drought and water crises: science, technology, and management issues, vol 86. CRC, Boca Raton

    Book  Google Scholar 

  • Wilson WJ, Yueh SH, Dinardo SJ, Chazanoff SL, Kitiyakara A, Li FK, Rahmat-Samii Y (2001) Passive active l-and s-band (pals) microwave sensor for ocean salinity and soil moisture measurements. IEEE Trans Geosci Remote Sens 39(5):1039–1048

    Article  Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. i: Pure snow. J Atmos Sci 37(12):2712–2733

    Article  Google Scholar 

  • Wood A, Lettenmaier D (2008) An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys Res Lett 35(14)

    Google Scholar 

  • Yao Y, Liang S, Qin Q, Wang K (2010) Monitoring drought over the conterminous united states using modis and NCEP reanalysis-2 data. J Appl Meteorol Climatol 49(8):1665–1680

    Article  Google Scholar 

  • Yao Y, Liang S, Qin Q, Wang K, Zhao S (2011) Monitoring global land surface drought based on a hybrid evapotranspiration model. Int J Appl Earth Obs Geoinf 13(3):447–457

    Article  Google Scholar 

  • Yin D, Roderick ML, Leech G, Sun F, Huang Y (2014) The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett 41(22):7891–7897

    Article  Google Scholar 

  • Yirdaw SZ, Snelgrove KR, Agboma CO (2008) Grace satellite observations of terrestrial moisture changes for drought characterization in the Canadian prairie. J Hydrol 356(1):84–92

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of grace terrestrial water storage data into a land surface model: results for the Mississippi river basin. J Hydrometeorol 9(3):535–548

    Article  Google Scholar 

  • Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23

    Article  Google Scholar 

  • Zhang N, Hong Y, Qin Q, Liu L (2013) VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int J Remote Sens 34(13):4585–4609

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Aeronautics and Space Administration (NASA) award NNX15AC27G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sadegh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadegh, M., Love, C., Farahmand, A., Mehran, A., Tourian, M.J., AghaKouchak, A. (2017). Multi-Sensor Remote Sensing of Drought from Space. In: Lakshmi, V. (eds) Remote Sensing of Hydrological Extremes. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-43744-6_11

Download citation

Publish with us

Policies and ethics