Skip to main content

The RF Plasma Torches

  • Chapter
  • First Online:
Theory of Low-Temperature Plasma Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 95))

Abstract

The basis of the physical processes in the RF plasma torches and parameters of the RF plasma torches will be considered in this chapter. They are based on the two models—equilibrium and nonequilibrium plasmas, as well as the experimental results. A large number of the results presented in this chapter show the most power of simulation methods implemented as a great tool of researchers. The obtained results can be used to study the physical processes in the RF discharge, establishing communication between the inside of the discharge parameters and external parameters of plasma torches and generators, determine the number and locations of measurement of various parameters of the discharge, and for the solution problem of the control of the RF plasma torches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresvin S.V. Low-temperature plasma generators // Encyclopedia of Low-Temperature Plasma / Ed. by V.E. Fortov. M.: Nauka, 2000. V. II. PP 280–328.

    Google Scholar 

  2. Dresvin S.V., Donskoy A.B., Goldfarb V.M. Determination of conductivity of RF discharge in Argon // J. Technical Physics. 1965. V. 35. No. 9. PP. 1646–1653.

    Google Scholar 

  3. Dundas P.D. Induction plasma heating // Report NASA. 1969. No. 11487.

    Google Scholar 

  4. Vermeulen R.S., Lee Bowden, Vieram P.N. Regulation of the moving state of the plasma using RF electromagnetic fields // Rocket technical and Astronautics. 1967. V. 5. No. 12. PP. 251–260.

    Google Scholar 

  5. Dymschits B.M., Koretsky J.P. Experimental study of inductive discharge // J. Technical Physics. 1964. V. 5. No. 19. PP. 1677–1679.

    Google Scholar 

  6. Jonston P.D. Determination of temperature in a radiofrequency discharge using a reversal technique // Brit. J. Appl. Phys. 1968. Ser. 2. No. 1. PP. 479–484.

    Google Scholar 

  7. Molinet F. Иccлeдoвaниe pacпpeдeлeния элeктpoннoй тeмпepaтypы в apгoнoвoй плaзмe, вoзбyждaeмoй BЧ-гeнepaтopoм // C.r. Acad. Sc. 1966. Vol. 262. No. 21. PP. 1377–1380. Study of the electron temperature distribution in an argon plasma excited by RF generator

    Google Scholar 

  8. Goldfarb V.M., Goikhman V.H. Characteristics and possible use of spectroscopic high-frequency discharge at atmospheric pressure // J. Plasma chemistry reactions and processes. 1968. V. 8. No. 2. PP. 193–196.

    Google Scholar 

  9. Determination of the temperature in the steady high-frequency induction discharge / R.E. Rovinskii, V.A. Gruzdev, V.M. Gutenmakher et al. // J. Thermal physics of High Temperatures. 1967. V. 5. No. 4. PP. 557–561.

    Google Scholar 

  10. Goldfarb V.M., Goikhman V.H., Dresvin S.V. Characteristics and possible use of spectroscopic high-frequency discharge at atmospheric pressure // Proc. Colloq. Spectrosc. Hungary. 1967. PP. 751–760.

    Google Scholar 

  11. Eckert H.U., Kelly F.L., Olsen H.N. Spectroscopic observation on induction-coupled plasma flames in air and argon // J. Appl. Phys. 1968. Vol. 39. No. 3. PP. 1846–1852.

    Article  ADS  Google Scholar 

  12. A study of RF plasma flame of Argon burner / V.M. Goldfarb, Donskoy A.V., Dresvin S.V. et al. // J. Thermal physics of High Temperatures. 1967. V. 5. No. 4. PP. 549–555.

    Google Scholar 

  13. Apsit A.R., Goikhman V.H. Preparation and study of pulsed RF inductive discharge at atmospheric pressure // J. Technical Physics. 1970. V. 5. No. 7. PP. 1551–1560.

    Google Scholar 

  14. Dresvin S.V., Klubnikin V.S. The study of nonequilibrium in a stream of Argon plasma RF discharge at atmospheric pressure // J. Thermal physics of High Temperatures. 1971. V. 9. No. 3. PP. 475–480.

    Google Scholar 

  15. Biberman L.M., Vorob’ev V.S., Yakubov I.T. Low-temperature plasma with nonequilibrium ionization // Successes of physical sciences. 1979. V. 128. No. 2. pp. 233–271.

    Google Scholar 

  16. Velikhov E.P., Kovalev A.S., Rakhimov A.T. Physical phenomena in gas-discharge plasma. M .: Nauka, 1987.

    Google Scholar 

  17. Goldfarb V.M., Ilyina E.V. Non-equilibrium low-temperature plasma sources. The populations of the levels and spectral diagnostics // Proceedings of the Academy of Sciences of the USSR. 1975. No. 3. Vol. 1. pp. 28–38.

    Google Scholar 

  18. Goikhman V.H., Goldfarb V.M. RF thermal discharge. // J. Plasma chemical reactions and processes / Ed. L.S. Polak. M.: Science. 1977. PP. 232–278.

    Google Scholar 

  19. Reboux J. Ingeniers et techniciens. 1963. No. 166. P. 109.

    Google Scholar 

  20. Chase J.D. Magnetic Pinch Effect in the Thermal RFI Plasma // J. Appl. Phys. 1969. Vol. 40. No. 1. PP. 318–325.

    Article  ADS  Google Scholar 

  21. Chase J.D. Theoretical and Experimental Investigation of Pressure and Flow in Induction Plasmas // J. Appl. Phys. 1971. Vol. 42. No. 12. PP. 4870–4879.

    Article  ADS  Google Scholar 

  22. Klubnikin V.S. Thermal and gas-dynamic characteristics of the RF discharge in a stream of Argon // J. Thermal physics of High Temperatures. 1975. V. 13. No. 3. PP. 473–474.

    Google Scholar 

  23. Sorokin L.M. Theory electric Arc in a forced heat exchange. M.: Nauka. 1977.

    Google Scholar 

  24. Sorokin L.M. // J. Physics and chemistry of material treatments. 1980. PP. 32–34.

    Google Scholar 

  25. Raiser Y.P. // Successes of physical sciences. 1969. V. 99. No.. 4. P. 545.

    Google Scholar 

  26. Soshnikov V.N., Trekhov E.S. On the theory of RF vortex high pressure discharge // J. Thermal physics of High Temperatures. 1966. V. 4. No. 2. P. 166.

    Google Scholar 

  27. Dresvin S.V. // Abstracts of the VII Conf. by generators of Low-temperature plasma. Alma-Ata 1977.

    Google Scholar 

  28. Dresvin S.V., El-Mikati H. // J. Thermal physics of High Temperatures. 1977. No. 2.

    Google Scholar 

  29. Thomson J.J. // Philos. Mag. 1926. Vol. 2. P. 674.

    Google Scholar 

  30. Thomson J.J. // Philos. Mag. 1927. Vol. 4. P. 1128.

    Google Scholar 

  31. Fomenko A.A., Trekhov E.S. Questions of Low-temperature plasma physics. Minsk: Science and Technology, 1970. PP. 195–198.

    Google Scholar 

  32. Eckert H.U. Measurement of the Magnetic Field: Distribution in a Thermal Induction Plasma // J. Appl. Phys. 1971. Vol. 42. No.. 8. P. 3108–3113.

    Article  ADS  Google Scholar 

  33. Eckert H.U. Dual Magnetic Probe Systems for Phase Measurement in Thermal Induction Plasma // J. Appl. Phys. 1972. Vol. 43. No. 6. P. 2707–2713.

    Article  ADS  Google Scholar 

  34. Nguyen Quoc S. 2D-Electromagnetic field calculation on the RF plasma torch // Proc. of the Inter. Sem. on Heating by Internal Sources. Padua. Italy, 2001. P. 609–615.

    Google Scholar 

  35. Mostaghimi J., Boulos M. Two-Dimensional electromagnetic field effects in induction plasma modeling // J. Plasma Chem. Plasma Process. 1989. Vol. 9. P. 25.

    Google Scholar 

  36. L.R. Neiman, K.S. Demirchyan. Theoretical Foundations of Electrical Engineering. L.: Energoizdat, 1981. V. 2.

    Google Scholar 

  37. Korn G., Korn T. Handbook of mathematics for scientists and engineers. M.: Science. 1984.

    Google Scholar 

  38. Kalantarov P.L., Zeitlin L.A. Calculation of inductances: Handbook. L.: Energoatomisdat 1986.

    Google Scholar 

  39. RF multiflux plasmatron study. Experimental measurement and modeling / D. Morvan, J. Erin, S. Magnaval et al. // Proc. of the XII Inter. Sym. on Plasma Chemistry — Minneapolis. USA, 1995. PP. 17430–1748.

    Google Scholar 

  40. Modelling of the RF multiflux plasmatron / D. Morvan, J. Erin, S. Magnaval et al. // Proc. of the IV European Conference on Thermal plasma Processes. Athens. Greece, 1996. PP.712–717.

    Google Scholar 

  41. In-flight measurement of particle size and velocity in a radio frequency plasma torch / E. Franke, F. Krayem, D. Morvan et al. // Proc. of the V European Conference on Thermal plasma Processes. St. Petersburg, 1998. PP. 347–353.

    Google Scholar 

  42. Experimental investigation of impurity evaporation from powders injected in an RF plasma torch // D. Morvan, J. Amouroux, S. Magnaval et al. // Proc. of the IV European Conference on Thermal plasma Processes. Athens. Greece, 1996. PP. 713–720.

    Google Scholar 

  43. Physics and technology of Low-temperature plasma / Ed. by S.V. Dresvin. M.: Atomizdat. 1972.

    Google Scholar 

  44. Dresvin S., Amouroux J., Nguen Quoc Shi. Analisis of deviation from thermal and ionization equilibrium in an Argon plasma flow // J. High temperature Material Processes. 1997. Vol. 1. No. 3. PP. 369–381.

    Google Scholar 

  45. Clarke C.J., Inkropera F.P. Thermochemical nonequilibrium in a stabilized Argon Arc plasma // J. Rocket and technical complex. 1972. V. 10. No. 1. PP. 19–21.

    Google Scholar 

  46. The calculation of the initial section of the channel characteristics of the electric Arc on the basis of two-temperature plasma model / V.M. Lelevkin, E.P. Pakhomov, V.F. Semenov, V.S. Engelsht // J. Thermal physics of High Temperatures. 1986. V. 24. No. 3. PP. 587–593.

    Google Scholar 

  47. Mathematical modeling of electric Arc / Ed. V.S. Engelsht. Frunze: Ilim. 1983.

    Google Scholar 

  48. Asinovsky E.I., Pakhomov E.P. An analysis of the temperature field in a cylindrically symmetric pole of electric Arc // J. Thermal physics of High Temperatures. 1968. V. 6. No. 2. PP. 333–336.

    Google Scholar 

  49. Litvinov I.I., Lyumkis E.D., Philipov S.S. Nonequilibrium model of a strongly radiating electric discharge in an inert gas // Preprint No. 135. M. 1976. P. 72.

    Google Scholar 

  50. Gogosov V.V., Shelchkova I.N. The conclusion of the boundary conditions for concentration, velocity and temperature components of a partially ionized plasma taking into account the capacity of the parietal falls // USSR Academy of Sciences. Ser. Fluid Mechanics. 1974. No. 5. PP. 76–88.

    Google Scholar 

  51. Gogosov V.V. Shelchkova I.N. Examples of simple boundary conditions for the electron and ion densities and temperatures of electrons and heavy particles // USSR Academy of Sciences. Ser. Fluid Mechanics. 1976. No. 6. PP. 169–172.

    Google Scholar 

  52. Nazarenko I.P., Panevin I.G. Calculation canal stabilized Arcs based on radiative transfer and nonequilibrium plasma // Electric Arc theory in conditions of forced heat. Nauka. Novosibirsk. 1977. PP. 61–67.

    Google Scholar 

  53. Alievsky M.Y., V.M. Zhdanov. The transport equations for a many-component non-isothermal plasma // J. Appl. Phys. 1963. No. 5. pp. 11–17

    Google Scholar 

  54. Dresvin S.V. Fundamentals of theory and design of RF plasma torches. L.: Energoatomizdat 1991.

    Google Scholar 

  55. Modelling of the RF multiflux plasmatron / D. Morvan, J. Amouroux, S. Magnaval et al. // J. High Tem. Mat. Proc. 1998. Vol. 1. No. 3. P. 78–85.

    Google Scholar 

  56. Caculation of RF plasma torch parameters by means of nonequilibrium model of Ar Plasma / S.V. Dresvin, S. Nguyen-Kuok, D. Ivanov, J. Amouroux // Proc. of the VI European Conference on Thermal plasma Processes. Strasbourg, 2000. P. 257–267.

    Google Scholar 

  57. Calculation of temperature and flow in RF plasma torch. Influence of cold channel produced by axial gas injection / S. Nguyen-Kuok, S. Dresvin, J. Amouroux, D. Morvan // Proc. of the V European Conference on Thermal plasma Processes. St. Petersburg, 1998. P. 169–175.

    Google Scholar 

  58. Modeling of coupled motion, heat and mass transfer, electromagnetic and atomic hydrogen in a Ar — H2 thermal RF plasma / Ph. Mandin, D. Morvan, J. Amouroux et al. // Proc. of the XIV Inter. Sym. on Plasma Chemistry. Prague, 1999. Vol. 1. P. 415–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Nguyen-Kuok .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen-Kuok, S. (2017). The RF Plasma Torches. In: Theory of Low-Temperature Plasma Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-43721-7_7

Download citation

Publish with us

Policies and ethics