Skip to main content

Evacuation Modeling and Betweenness Centrality

  • Conference paper
  • First Online:
Book cover Dynamics of Disasters—Key Concepts, Models, Algorithms, and Insights (DOD 2015 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 185))

Included in the following conference series:

  • 1125 Accesses

Abstract

In this chapter, we consider the problem of efficiently evacuating all people in an urban area from danger zones to safe zones. This problem, which has attracted major scientific interest and has been well-studied in literature, is indeed large-scale, and as such difficult to solve. In this work, we propose a solution method based on an islanding scheme. This decomposition approach takes into consideration the betweenness of a set of nodes in the transportation network, and aims to obtain clusters from those nodes that can be easily solved: the idea is to divide the flow more evenly towards multiple paths to safety, leading to a more robust evacuation process. We portray our results on several synthetic and real-life transportation networks. More importantly, we use a very large-scale network representation of the city of Jacksonville, Florida, in the USA to show that our approaches solve the problem, a feat that proved impossible for commercial solvers. We conclude this study with our observations and plans for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arulselvan, A., Groß, M., Skutella, M.: Graph orientation and flows over time. In: Algorithms and Computation, pp. 741–752. Springer, Cham (2014)

    Google Scholar 

  • Bavelas, A.: A mathematical model for group structures. Hum. Organ. 7 (3), 16–30 (1948)

    Article  Google Scholar 

  • Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22 (6), 725–730 (1950)

    Article  Google Scholar 

  • Ben-Tal, A., Do Chung, B., Mandala, S.R., Yao, T.: Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. B: Methodol. 45 (8), 1177–1189 (2011)

    Google Scholar 

  • Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008 (10), P10008 (2008)

    Google Scholar 

  • Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28 (4), 466–484 (2006)

    Article  Google Scholar 

  • Bretschneider, S., Kimms, A.: Pattern-based evacuation planning for urban areas. Eur. J. Oper. Res. 216 (1), 57–69 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Caunhye, A.M., Nie, X., Pokharel, S.: Optimization models in emergency logistics: a literature review. Socio-Econ. Plan. Sci. 46 (1), 4–13 (2012)

    Article  Google Scholar 

  • Chiu, Y.C., Zheng, H.: Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: model formulation and solution. Transp. Res. E: Logist. Transp. Rev. 43 (6), 710–736 (2007)

    Article  Google Scholar 

  • Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing. Transp. Res. A: Policy Pract. 37 (7), 579–604 (2003)

    Google Scholar 

  • Davis, J.R., Paramygin, V.A., Figueiredo, R.J., Sheng, Y.P., Vogiatzis, C., Pardalos, P.M.: The coastal science educational virtual appliance (CSEVA). In: Proceedings of the 12th International Conference on Estuarine and Coastal Modeling, St. Augustine, FL, pp. 7–9 (2011)

    Google Scholar 

  • Davis, J.R., Zheng, Q.P., Paramygin, V.A., Tutak, B., Vogiatzis, C., Sheng, Y.P., Pardalos, P.M., Figueiredo, R.J.: Development of a multimodal transportation educational virtual appliance (MTEVA) to study congestion during extreme tropical events. In: Transportation Research Board 91st Annual Meeting, 12-1119 (2012)

    Google Scholar 

  • Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23 (3), 181–201 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Everett, M.G., Borgatti, S.P.: Extending centrality. In: Models and Methods in Social Network Analysis, vol. 35(1), pp. 57–76, Cambridge University Press, New York (2005)

    Google Scholar 

  • Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8 (3), 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • Fortunato, S.: Community detection in graphs. Phys. Rep. 486 (3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  • Gale, D.: Transient flows in networks. Tech. Rep., DTIC Document (1958)

    MATH  Google Scholar 

  • Glenn Richey, R. Jr., Natarajarathinam, M., Capar, I., Narayanan, A.: Managing supply chains in times of crisis: a review of literature and insights. Int. J. Phys. Distrib. Logist. Manag. 39 (7), 535–573 (2009)

    Article  Google Scholar 

  • Guimera, R., Mossa, S., Turtschi, A., Amaral, L.N.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. 102 (22), 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, pp. 11–15 (2008)

    Google Scholar 

  • Hamacher, H., Tufekci, S.: On the use of lexicographic min cost flows in evacuation modeling. Nav. Res. Logist. 34 (4), 487–503 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems: a state of art. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer (ITWM) (2001)

    MATH  Google Scholar 

  • He, Y., Wang, Y., Shi, J., Liu, Z.: An evacuation network flow optimization model for city transportation systems with policemen resource allocation. In: 2014 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), pp. 45–50. IEEE, New York (2014)

    Google Scholar 

  • Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems. In: SODA, vol. 94, pp. 433–441 (1994)

    MathSciNet  MATH  Google Scholar 

  • Kim, S., Shekhar, S., Min, M.: Contraflow transportation network reconfiguration for evacuation route planning. IEEE Trans. Knowl. Data Eng. 20 (8), 1115–1129 (2008)

    Article  Google Scholar 

  • Leavitt, H.J.: Some effects of certain communication patterns on group performance. J. Abnorm. Soc. Psychol. 46 (1), 38 (1951)

    Article  MathSciNet  Google Scholar 

  • Lu, Q., George, B., Shekhar, S.: Capacity constrained routing algorithms for evacuation planning: a summary of results. In: Advances in Spatial and Temporal Databases, pp. 291–307. Springer, Berlin (2005)

    Google Scholar 

  • Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103 (23), 8577–8582 (2006)

    Article  Google Scholar 

  • Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69 (2), 026113 (2004)

    Article  Google Scholar 

  • Rebennack, S., Arulselvan, A., Elefteriadou, L., Pardalos, P.M.: Complexity analysis for maximum flow problems with arc reversals. J. Comb. Optim. 19 (2), 200–216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sabidussi, G.: The centrality index of a graph. Psychometrika 31 (4), 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Vogiatzis, C., Walteros, J.L., Pardalos, P.M.: Evacuation through clustering techniques. In: Models, Algorithms, and Technologies for Network Analysis, pp. 185–198. Springer, New York (2013)

    Google Scholar 

  • Vogiatzis, C., Yoshida, R., Aviles-Spadoni, I., Imamoto, S., Pardalos, P.M.: Livestock evacuation planning for natural and man-made emergencies. Int. J. Mass Emerg. Dis. 31 (1), 25–37 (2013)

    Google Scholar 

  • Vogiatzis, C., Veremyev, A., Pasiliao, E., Pardalos, P.: An integer programming approach for finding the most and the least central cliques. Optim. Lett. 9 (4), 615–633 (2015). doi:10.1007/s11590-014-0782-2. http://dx.doi.org/10.1007/s11590-014-0782-2

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by DTRA and the Air Force Research Laboratory Mathematical Modeling and Optimization Institute. Chrysafis Vogiatzis would also like to acknowledge support from ND EPSCoR NSF #1355466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysafis Vogiatzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vogiatzis, C., Pardalos, P.M. (2016). Evacuation Modeling and Betweenness Centrality. In: Kotsireas, I., Nagurney, A., Pardalos, P. (eds) Dynamics of Disasters—Key Concepts, Models, Algorithms, and Insights. DOD 2015 2016. Springer Proceedings in Mathematics & Statistics, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-43709-5_17

Download citation

Publish with us

Policies and ethics