Skip to main content

Cytogenetics, a Science Linking Genomics and Breeding: The Brassica Model

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Earlier, classical cytogenetics played a key role in taxonomic studies through identification of chromosome number and morphology. Similarly, the first identifications of polyploid species, and the analysis of relationships between different species from interspecific hybrids, were based on the observation of chromosome pairing during metaphase I of meiosis. Cytogenetics subsequently got a boost with the development of mapping and of next-generation sequencing technologies, enabling the development of modern molecular cytogenetics. In this chapter, we present the major impacts of molecular cytogenetics: shedding new light on genome organization and evolution as well as regulation of meiosis in the economically important genus Brassica and the tribe Brassicaceae. First, we present how comparative chromosome painting (CCP) using pools of Arabidopsis thaliana BAC clones is used to establish genome organization in diploid and polyploid species in conjunction with genotyping and sequencing data. This method complements phylogenetic analyses in establishment of the common ancestral genome and in the description of the three differentially fractionated Brassica ancestral subgenomes. Secondly, intergenomic relationships can be determined by BAC-fluorescent in situ hybridization (BAC-FISH) and genomic in situ hybridization (GISH); these techniques allow identification of the different genomes and chromosomes to quantify homologous and non-homologous pairing in haploids and hybrids, identifying structural rearrangements within allopolyploid species and between genomes in interspecific hybrids. Thirdly, meiosis and meiotic recombination in Brassica napus and its close relatives can be studied using antibodies developed against Arabidopsis proteins. From all these data, we show how molecular cytogenetics is essential for our understanding of genetics and genomics in the genus Brassica and how cytogenetics will undoubtedly play a significant role in the times to come.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alkan C, Coe BP, Eichler EE (2011) Applications of next-generation sequencing genome structural variation discovery and genotyping. Nat Rev Genet 12:363–375

    Article  CAS  Google Scholar 

  • Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61(5):931–954

    Google Scholar 

  • Attia T, Röbbelen G (1986) Meiotic pairing in haploids and amphihaploids of spontaneous versus synthetic origin in rape, Brassica napus l. Can J Genet Cytol 28:330–334

    Article  Google Scholar 

  • Bozza CG, Pawlowski WP (2008) The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 120:313–319

    Article  CAS  Google Scholar 

  • Catcheside DG (1934) The chromosomal relationships in the Swede and turnip groups of Brassica. Ann Bot 48:601–633

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res 129(1–3):143–153

    Article  CAS  Google Scholar 

  • Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, Le Guin S, Novatchkova M, Grelon M (2012) The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet 8(7):e1002799

    Article  CAS  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci U S A 94:3442–3447

    Article  CAS  Google Scholar 

  • Chen S, Nelson MN, Chèvre AM, Jenczewski E, Li Z, Mason AS, Meng J, Plummer JA, Pradhan A, Siddique KH (2011) Trigenomic bridges for Brassica improvement. Crit Rev Plant Sci 30(6):524–547

    Article  CAS  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25(5):1541–1554

    Article  CAS  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024. https://doi.org/10.1038/hortres.2014.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV, da Silva AVC, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181

    Article  CAS  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park J-Y, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  CAS  Google Scholar 

  • Chèvre AM, Adamczyk K, Eber F, Huteau V, Coriton O, Letanneur JC, Laredo C, Jenczewski E, Monod H (2007) Modelling gene flow between oilseed rape and wild radish. 1. Evolution of chromosome structure. Theor Appl Genet 114:209–221

    Article  Google Scholar 

  • Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22(7):2265–2276

    Article  CAS  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  Google Scholar 

  • Fluch S, Kopecky D, Burg K, Šimková H, Taudien S, Petzold A, Kubaláková M, Platzer M, Berenyi M, Krainer S, Doležel J, Lelley T (2012) Sequence composition and gene content of the short arm of Rye (Secale cereale) chromosome 1. PLoS ONE 7(2):e30784

    Article  CAS  Google Scholar 

  • Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    Article  CAS  Google Scholar 

  • Fredua-Agyeman R, Coriton O, Huteau V, Parkin IAP, Chevre AM, Rahman H (2014) Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor Appl Genet 127(6):1305–1318

    Article  Google Scholar 

  • Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998) Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theor Appl Genet 96(3–4):325–330

    Article  CAS  Google Scholar 

  • Gomez-Campo C (1980) Morphology and morphotaxonomy of the tribe Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Scientific Society Press, Tokyo, pp 3–31

    Google Scholar 

  • Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E (2014) Homoeologous chromosome sorting and progression of meiotic recombination in Brassica napus: ploidy does matter! Plant Cell 26(4):1448–1463

    Article  CAS  Google Scholar 

  • Hasterok R, Maluszynska J (2000) Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species. Genome 43:574–579

    Article  CAS  Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216

    Article  CAS  Google Scholar 

  • Heneen WK, Geleta M, Brismar K, Xiong ZY, Pires JC, Hasterok R, Stoute AI, Scott RJ, King GJ, Kurup S (2012) Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa-B. oleracea monosomic alien addition lines. Ann Bot 109:1227–1242

    Article  CAS  Google Scholar 

  • Howell EC, Barker G, Jones G, Kearsey MJ, King G, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell EC, Armstrong SJ, Barker GC, Jones GH, King GJ, Ryder CD, Kearsey MJ (2005) Physical organization of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome 48(6):1093–1103

    Article  CAS  Google Scholar 

  • Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180(4):1849–1857

    Article  CAS  Google Scholar 

  • Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Crit Rev Plant Sci 23:21–45

    Article  CAS  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) Prbn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Książczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chèvre AM (2011) Epigenetic silencing precedes rDNA loci rearrangements during the stabilization of a polyploid species Brassica napus. Chromosoma 120:557–571

    Article  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113(8):1467–1480

    Article  CAS  Google Scholar 

  • Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chèvre AM (2010) Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22(7):2253–2264

    Article  CAS  Google Scholar 

  • Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Perumal S, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229

    Article  CAS  Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  CAS  Google Scholar 

  • Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  Google Scholar 

  • Mandáková T, Singh V, Krämer U, Lysak MA (2015) Genome structure of the heavy metal hyperaccumulator Noccaea caerulescens and its stability on metalliferous and nonmetalliferous soils. Plant Physiol 169:674–689

    Article  Google Scholar 

  • Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M; International Wheat Genome Sequencing Consortium, Jakobsen KS, Wulff BB, Steuernagel B, Mayer KF, Olsen OA (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 18;345(6194):1250092

    Google Scholar 

  • Mason AS, Huteau V, Eber F, Coriton O, Yan G, Nelson MN, Cowling WA, Chèvre AM (2010) Genome structure affects the rate of autosyndesis and allosyndesis in AABC, BBAC and CCAB Brassica interspecific hybrids. Chromosome Res 18:655–666

    Article  CAS  Google Scholar 

  • Mason AS, Nelson MN, Castello MC, Yan G, Cowling WA (2011) Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theor Appl Genet 122:543–553

    Article  Google Scholar 

  • Mason AS, Nelson MNN, Takahira J, Cowling WA, Moreira Alves G, Chaudhuri A, Chen N, Ragu ME, Dalton-Morgan J, Coriton O, Huteau V, Eber F, Chèvre AM, Batley J (2014) The fate of chromosomes and alleles in an allohexaploid Brassica population. Genetics 197:273–283

    Article  Google Scholar 

  • Mason AS, Takahira J, Atri C, Samans B, Hayward A, Cowling WA, Batley J, Nelson MN (2015) Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid. BMC Plant Biol 15:173

    Article  Google Scholar 

  • Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327

    Article  CAS  Google Scholar 

  • Mizushima U (1980) Genome analysis in Brassica and allied Genera. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Scientific Society Press, Tokyo, pp 89–106

    Google Scholar 

  • Morinaga T (1934) Interspecific hybridization in Brassica VI. The cytology of F1 hybrdis of B. juncea and B. nigra. Cytologia 6:62–67

    Article  Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378

    Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot 7:389–452

    Google Scholar 

  • Nagpal R, Raina SN, Sodhi YS, Mukhopadhyay A, Arumugam N, Pradhan AK, Pental D (1996) Transfer of Brassica tournefartii (TT) genes to allotetraploid oilseed Brassica species (B. juncea AABB, B. napus AACC, B. carinata BBCC): homoeologous pairing is more pronounced in the three-genome hybrids (TACC, TBAA, TCAA, TCBB) as compared to allodiploids (TA, TB, TC). Theor Appl Genet 92:566–571

    Article  CAS  Google Scholar 

  • Navabi ZK, Huebert T, Sharpe AG, O’Neill CM, Bancroft I, Parkin IAP (2013) Conserved microstructure of the Brassica B genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genom 14:250

    Article  CAS  Google Scholar 

  • Nicolas S, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder C, Chevre AM, Jenczewski E (2007) Homoeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503

    Article  CAS  Google Scholar 

  • Nicolas S, Leflon M, Monot H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E (2009) Genetic regulation of meiotic crossovers between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385

    Article  CAS  Google Scholar 

  • Nicolas S, Monot H, Eber F, Chèvre AM, Jenczewski E (2012) Non random distribution of extensive chromosome rearrangements in Brassica napus depends on genome organization. Plant J 70:691–703

    Article  CAS  Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IA, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D (2014) RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genom 15:396

    Article  Google Scholar 

  • Parkin I (2011) Chasing ghosts: comparative mapping in the Brassicaceae. In: RA Jorgensen (ed) Plant genetics and genomics: crops and models, vol 9, pp 153–170

    Google Scholar 

  • Parkin IAP, Sharp AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46:291–303

    Article  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  Google Scholar 

  • Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15(6):R77

    Article  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet E, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Botanica 55:1–57

    Google Scholar 

  • Prakash SR, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187

    CAS  Google Scholar 

  • Renard M, Dosba F (1980) Etude de l’haploidie chez le colza (Brassica napus L. var oleifera metzger). Annales de l’amélioration des Plantes 30:191–209

    Google Scholar 

  • Röbbelen G (1960) Beiträge zur Analyse des Brassica-Genoms. Chromosoma 11:205–228

    Article  Google Scholar 

  • Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacers. Plant Mol Biol 9:509–520

    Article  CAS  Google Scholar 

  • Schiessl S, Samans B, Huttel B, Reinhard R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front Plant Sci 5

    Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  Google Scholar 

  • Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216

    Article  CAS  Google Scholar 

  • Snowdon RJ, Kohler W, Friedt W, Kohler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    Article  CAS  Google Scholar 

  • Suay L, Zhang D, Eber F, Jouy H, Lodé M, Huteau V, Coriton O, Szadkowski E, Leflon M, Martin OC, Falque M, Jenczewski E, Paillard S, Chèvre AM (2014) Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. New Phytol 201(2):645–656

    Article  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chèvre AM (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Coriton O, Jenczewski E, Chèvre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191:554–894

    Article  Google Scholar 

  • Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, Kirby A, Liu ST, Muddukrishna B, Ohsumi TK, Shen YP, Borowsky M, Daly MJ, Morton CC, Gusella JF (2011) Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet 88:469–481

    Article  CAS  Google Scholar 

  • Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z; Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  Google Scholar 

  • Wang YP, Wang XY, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann NY Acad Sci 1256:1–14

    Article  Google Scholar 

  • Xiong Z, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    Article  CAS  Google Scholar 

  • Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  CAS  Google Scholar 

  • Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74

    Article  CAS  Google Scholar 

  • Zou J, Fu DH, Gong HH, Qian W, Xia W, Pires JC, Li RY, Long Y, Mason AS, Yang TJ, Lim YP, Park BS, Meng JL (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J 68:212–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. A. L. was supported by a research grant from the Czech Science Foundation (P501/12/G090). ASM is supported by an Emmy Noether grant from the Deutsche Forschungsgemeinschaft (MA 6473/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Chèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chèvre, AM., Mason, A.S., Coriton, O., Grandont, L., Jenczewski, E., Lysak, M.A. (2018). Cytogenetics, a Science Linking Genomics and Breeding: The Brassica Model. In: Liu, S., Snowdon, R., Chalhoub, B. (eds) The Brassica napus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-43694-4_2

Download citation

Publish with us

Policies and ethics